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ABSTRACT

Drug abuse poses serious challenges in various countries worldwide. It causes the amount of
oxidative stress to elevate and lead to the abnormality of physiological changes in the body.
Concerning the varied of effects in this situation, this systematic review aimed to scrutinize
the relation between drug addiction and the oxidative stress in animal models. A systematic
literature search using PubMed via National Library of Medicine (NIH) with the keywords as
follow: “Oxidative stress” or “oxidant” or “free radical” and “opioid” or “opioid drug addiction”
or “animal opioid addiction”. A total of seven relevant articles underwent further analysis for
data extraction. Tramadol was shown has an effect on testicular tissue abnormalities due to
the presence of oxidative stress that change the gene expression, besides, it can lead to altered
neurotransmitter in cerebral cortex. Morphine appear has different reaction of withdrawal
symptoms in male and female. It also has greater elevation of symptoms when induced with
naloxone. The combination of morphine and remifentanil reveal the changes in myocardium
due to the oxidative stress changes, however, in combination with anakinra it happened to
reduce the morphine tolerance which has the antinociceptive properties. Evidence indicate
that chronic codeine administration can cause changes in liver function and DNA damage.
Current research confirms that oxidative stress and drug addiction have an association leading
to the disturbance of the body's normal physiology.
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INTRODUCTION

Oxidative stress (OS) is described as an imbalance between excessive oxidant free radicals
and insufficient antioxidant system destruction among those radicals as an internal defensive
mechanism (Pizzino et al., 2017). Under physiological circumstances, oxidant chemicals such
as reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created, and various
antioxidant defense systems eliminate them (Checa & Aran, 2020).
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ROS are molecules composed of a minimum of one oxygen atom and one or more unpaired electrons and they
are created as natural byproducts of the normal oxygen metabolism (Jakubczyk et al., 2020). This compound play
critical roles in cell signalling, homeostasis, and defence systems, also consist of superoxide anion radical (0,7),
hydroxyl radical (¢ OH), and singlet oxygen, these species can react with many biological components, such as
lipids, proteins, and DNA, causing oxidative stress and possible damage (Griendling et al,, 2016). Meanwhile, the
term "reactive nitrogen species” (RNS) refers to nitrogen-containing reactive species such as nitric oxide (NO =),
peroxynitrite, and nitrogen dioxide radical (NO2 = ), which resemble ROS (Li et al., 2016).

0S is produced when the antioxidant balance is disrupted, resulting in metabolic dysregulation, oxidation of
DNA, proteins, and lipids, or oxidative damage in organs, tissues, or cells. Thus, inactivation of biological molecules
will lead to pathological changes and one’s body will develop many harmful diseases (Manzoor et al., 2022). Drug
addiction is one of the brain disease that caused by the imbalance of free radical. Previous studies found that drug
can cause oxidative stress in two ways, first is by reducing the antioxidant system's function and the other is by
increasing the production of free radicals (Heilig et al., 2021). To simplify, ROS and RNS triggered the production
of oxidative stress by alteration of mitochondrial respiration, cellular metabolism, immunological response,
tyrosine nitration and cysteine oxidation, or in other word the formation of ROS and RNS are exceeding the
antioxidant capabilities (Lennicke & Cochemé, 2021). The combination of these conditions causes oxidative stress,
which contributes to a variety of diseases, including cardiovascular disease, neurological disorders, and cancers
(Brillo et al., 2021).

Opioid medications such as, morphine, heroin, and codeine have been extensively documented in their ability
to induce oxidative stress (Dinis-Oliveira, 2019). Previous studies found that drugs can cause oxidative stress by
reducing antioxidant levels in the body, it affects endogenous antioxidant defenses including catalase (CAT),
glutathione peroxidase (GSH), and superoxidase dismutase (SOD) (Samarghandian et al., 2014) (Hristov, 2022).
In contrast of this event, when a free radical steals an electron from lipids, the process is known as lipid
peroxidation, because it is impossible to measure lipid peroxidation in living subjects, the quantity of
malondialdehyde (MDA) reactive species in biological samples might be a suitable technique for determining lipid
peroxidation levels (Ayala et al., 2014). In addition, these biological markers are considered as the major markers
to measure the oxidative stress in one’s body. They are critical for maintaining redox equilibrium and protecting
cells from oxidative damage and their levels of activities are directly related to general health and disease
processes (Camkurt et al., 2019).

OBJECTIVES OF STUDY

The objectives of this review is to provide an overview of existing studies on the effect of oxidative stress caused
by opioid dependence in animal models, since this is a very common topic to be discussed among the researchers.
Other than that, it is also to narrow down the gap between the oxidative stress and its complications on internal
organs and organelles.

MATERIALS & METHODS
Literature review

A comprehensive evaluation of the literature was carried out in order to uncover relevant research on the
claimed association of oxidative stress and opioid drug addiction in rats. A database, PubMed via National Library
of Medicine (NIH) (published between 2011 and 2021) was utilized to conduct a comprehensive search of
biomedical research publications. The search strategy included a mix of the two sets of keywords listed. Oxidative
stress or oxidant or free radical and opioid or opioid drug addiction or animal opioid addiction.

Selection of research articles

The findings were varied to original studies published in English with abstracts. The review omitted review
papers, news, case reports, and other original materials that were not related to oxidative stress or opioid
addiction. Only studies that reported a connection between oxidative stress and opioid addiction were included
in this review.

Inclusion and exclusion criteria

Only studies that indicated a clear correlation between oxidative stress and opioid addiction were included in
this review. The following were the inclusion criteria: (i) animal studies OR (ii) studies that has direct association
between oxidative stress and opioid drugs OR (iii) studies that examine the potential treatment for oxidative
stress and opioid addiction.

The exclusions listed below were also considered: (i) studies that use other types of drugs OR (ii) studies that
has no effect on oxidative stress OR (iii) combination of opioid and other types of drugs.
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Selection of research articles

Before being included in the review, papers were assessed in three phases. Studies that did not meet the
inclusion criteria purely based on the title were omitted in the first phase. The remaining studies' abstracts were
analyzed in the second phase, and lastly the studies that did not match the inclusion criteria were eliminated
(Figure 1). To standardize the data collection, all data extraction was done separately using a data extraction form.
The following information was collected from the studies: Type of opioid drugs, treatment groups, parameter and
method of analysis, findings, and conclusion as shown in Table 1.

Figure 1

Flow chart of the articles selected from PubMed via NIH
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Notes: Final 7 related articles to opioid drugs and its causes in animals are included in this studies.

RESULTS

Based on the reviews of the association between OS and opioid addiction, most of the results (Table 1), show
that there are various key factors that usually correlates in one another and how they are lead in production of
ROS followed by the changes that appear in both biological and physical in one’s body.

DISCUSSION

Effects of oxidative stress caused by opioid drugs on internal organs
Liver

Despite the fact that tramadol, a commonly abused opiate, has been demonstrated to induce hepatic harm, no
research has been conducted to investigate the effect of long-term codeine usage on liver structure and function
(Shah et al., 2020). Based on the review, following 6 weeks of codeine administration, histological analysis of the
liver tissues indicated significant fatty degeneration of the hepatic parenchyma, inflammatory cell infiltration of
the portal system, and substantial collagen fiber deposition. After 6 weeks of codeine treatment, blood total
protein, albumin, and globulin levels decreased. Interestingly, following codeine administration, hepatic function
indicators (serum ALT y-GT, and AST) and hepatic marker enzyme activity (ALT, LDH, ALP, and AST) rose,
indicating that codeine caused liver damage (Akhigbe et al., 2020). The impairment in liver function and increased
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Table 1

Intervention of drug addiction in animals and its association with oxidative stress

Types of Treatment Parameter and method Findings Conclusion References
opioid drug groups of analysis
Tramadol Group I: Blood collection and MDA concentration T, Tramadol (Ibrahim &
control (21 biochemical estimations CAT, GSH, SOD administration Salah-Eldin,
days) in serum concentration | in blood  causes biological 2019)
Group II: LPO and antioxidant serum and testis anomalies in
tramadol enzymes activities in After tramadol, testicular tissue
(21 days) testicular tissue epididymal sperm count  associated with
Group III: Epididymal sperm count  and mortality | oxidative stress
tramadol and mortality Reference genes: due to an
(21days+4 Isolation of tRNA from Caspase-3, BCl-2, Bax increase in LPO
weeks testicular tissue Housekeeping gene; 3- and alterations
Reverse transcription - actin in gene
PCR analysis GII & GIII: | BCI-2 expression.
GII: Bax and caspase-3 T
GIII: Bax T
Morphine Group I: Somatic withdrawal GII and GIV: Prior opioid (Mavrikaki et
male, Tail flick (TF) and Produce acute and exposure al,, 2021)
vehicle acoustic startle assays protracted withdrawal increases male’s
Group II: Oxycodone self- sign sensitivity to
male, administration (SA) Male T somatic initiate misuse
morphine studies; (i) intravenous withdrawal sign and lowers the
Group III: catherer implantation compared to female. reinforcement
female, (ii) oxycodone self- Withdrawal associated effectiveness of
vehicle administration (SA) with greater initial oxycodone in
Group IV: oxycodone SA. females.
female, GII: T wet dog shake and
morphine ptosis, | tail withdrawal
latency
GIV: | response in
progressive ratio (PR)
Codeine Group I: Biochemical assay; DNA  GII & GIII: body, liver, Chronic codeine (Akhigbe et
control fragmentation assay, organo-somatic weight !  treatment caused al,, 2020)
Group II: detection of oxidative Liver function: liver damage via
codeine 4 DNA damage, oxidative ALT, LDH, AST T in GII a caspase3-
mg/kg marker, antioxidant and GIII compared to GI  mediated route
Group III: activities, and markers of Hepatic enzyme, AST by increasing
codeine 10 inflammation in hepatic =~ and ACT T in GIII free radical and
mg/kg tissue compared to GII TNF-a

Apoptosis assay

Na+- K+ -ATPase and
CaZ+-ATPase assay
Determination of liver
function

Histology

Oxidative markers: GII
and GIII

MDA, MPO, H202, AGE T
SOD, CAT, GPx, GST, GSH
l

NO and TNF-a T

Proton pumps: Na+- K+ -
ATPase and Ca2+-
ATPase T in GII and GIII
Apoptosis: DNA damage,
hepatic caspase-3 GIII >
GII > GI

GII: Moderate severity in
hepatic parenchymal
fatty degeneration

GIII: inflammatory cells
with thick collagen fibre
infiltrate the portal tract

production while
decreasing
antioxidant
buffering

capacity.

Notes: All opioid drugs, effect varies on animals.
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Table 1 (continued)

Intervention of drug addiction in animals and its association with oxidative stress

Morphine Group I: Antinociception test; (i) Antinociception test: Anakinra (Avci &
control (S) tail flick (TF) test (ii) GI: both TF and HP possesses Tagkiran,
Group II: hot-plate (HP) test presence % MPE value antinociceptive 2020)
100 mg/kg  Total antioxidant status GIII > GV in TF and HP characteristics,
anakinra (TAS) measurement GIV: | morphine boosts morphine
(A) Total oxidant status tolerance in TF and HP analgesic
Group III: 5 (TOS) measurement TAS and TOS levels in efficacy, and
mg/kg Measurement of elF-2a, dorsal root ganglions reduces
morphine ATF-4, CHOP, caspase-3 (DRG): tolerance
(M) GII: L TOS development
Group IV: M GIII and GV: | TAS after continuous
+A GIII: T TOS morphine
Group V: GIV: | TOS administration.
morphine GV: T TOS
tolerance GVI: 1 TOS
(MT) elF-2a, ATF-4, CHOP,

Group VI: caspase-3:

MT +A GIII: T elF-2a, T CHOP, no
changes in caspase-3
GIV: | ATF-4
GV: T ATF-4, T caspase-3

Tramadol Group I: Determination of lipid GII and GIII: Chronic (Mohamed &
control peroxidation, nitric oxide MDA and NO T tramadol use Mahmoud,
Group II: 30 (NO) and antioxidant GSH, GPx, SOD, and causes oxidative ~ 2019)
mg/kg defences mRNA activity | stress,
tramadol Oxidative DNA damage, T NF-xB p65 in GII inflammation,

Group III: tumor necrosis factor compared to GI apoptosis, and
60 mg/kg alpha (TNF- «), T oxidative DNA damage  changes in
tramadol interleukin (IL)-6 and (8-0x0-dG) in GII neurotransmitter

monoamines
Gene expression study
Western blot

T apoptosis (p53) in GII
T altered monoamines in
GII and GIII

s in the cerebral
cortex. Tramadol
enhanced lipid
peroxidation, NO,
monoamine
neurotransmitter
s, and lowered
antioxidant
defence enzyme
activity and
expression in the
cerebrum.
Chronic
tramadol
treatment
expressed
inflammation
and apoptosis
markers and
reduced anti-
apoptotic
proteins in rat
cerebrum.

Notes: All opioid drugs, effect varies on animals.
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Table 1 (continued)

Intervention of drug addiction in animals and its association with oxidative stress

Morphine & Group I: Tissue superoxide anion = Haemodynamics; no After acute, high  (Meietal,
Remifentanil SHAM by dihydroethidium differences between dosage exposure, 2013)
Group II: fluorescence groups except R1:T15 high
control Determination of (heart rate, mean concentrations of
Group III: myocardium arterial blood pressure,  remifentanil can
IPC malondialdehyde (MDA)  rate pressure productall cause oxidative
Group IV: level 1) alterations in the
RPC Determination of Superoxide anion rat's
Group V: RE  nitrotyrosine in production; T myocardium.
*R1, R5, myocardium remifentanil, T DHE The dose and
R10,R20 Immunofluorescence MDA concentration; Tin  duration of
for T15, assay for myocardial GV administration of
T60, T120 nitrotyrosine Nitrotyrosine remifentanil had
Determination of concentration; T dose of  an influence on
myocardial superoxide remifentanil, T its infarct
dismutase (SOD) activity  nitrotyrosine sparing effect.
Determination of concentration
myocardial 8-hydroxy-2- Immunofluorescence
deoxyguanosine level assay for myocardial
Determination of infarct  nitrotyrosine; T dose
size remifentanil, T
nitrotyrosine
concentration for 2
hours
No significant changes in
myocardial SOD
concentration when the
different doses of
remifentanil were
administered for 2
hours
Myocardial 8-OHdG
level; for 2 h of infusion,
T dose of remifentanil, T
myocardial 8-OHdG
concentration
Infarct sizes; T dose of
remifentanil, T infarct
sparing effectin GIV
Morphine & Group I: Assessment of morphine  GVI: T wet dog shakes, The modulatory (Bakhtazad
Naloxone control 1 dependence and stereotyped head role of CART etal, 2016)
Group II: withdrawal symptoms bobbing, sweeping tail peptide in the
morphine Real-time PCR movement, yawning, rewarding and
10 mg/kg Western blotting irritability, teeth reinforcing
Group III: chattering, swallowing, effects of opioids
morphine diarrhea lessens with time
80 mg/kg CART mRNA and and is enhanced
Group IV: protein: Tin NAc, | in when animals
control 2 hippocampus are subjected to
Group V: GII: no changes in mRNA  acute stress, such
addicted and CART as naloxone-
morphine GIII and GVI: T CART induced
Group VI: mRNA withdrawal
withdrawal GV: lCART syndrome or
morphine + GVII: CART same as GI abrupt high
naloxone and GIV dosage injection
Group VII: of morphine.
abstinent

Notes: All opioid drugs, effect varies on animals.

hepatic enzyme activities reported after codeine therapy are attributed, at least in part, suggests increased free
radical generation and decreased hepatic tissue enzymatic antioxidant activity (Kalas et al., 2021).
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Lipid peroxidation (LPO) of the hepatic cell membrane increased free radical production and decreased
antioxidant activity may have resulted in membrane fluidity loss and increased membrane permeability (Ayala et
al., 2014). This eventually resulted in hepatic enzymes (ALT, y-GT and AST) seeping into the circulation from
hepatocytes. The increased activity of the liver's enzymatic in codeine-treated individuals could have been due to
higher peroxidation of lipids in the liver, resulting in more enzyme permeability into the bloodstream (Kalas et
al, 2021). Aside from LPO, it also produced hepatic protein breakdown and oxidative DNA damage, as
demonstrated by raised 8-0H-dG and AGE levels in the liver. This suggests that codeine eliminated the liver's
massive macromolecule buildup. Increased hepatic DNA fragmentation in codeine-treated mice may have been
caused by increased oxidative DNA damage in liver cells (Poetsch, 2020).

The continuous activity of such macromolecules enables the development and ongoing operation of the
gradient of electricity over the cellular membrane, which is essential for a number of metabolic functions such as
cell volume maintenance (Lang, 2007). Codeine considerably lowered the activity of hepatic Na*-K*-ATPase and
Ca2*-ATPase in the current study. Because necrosis is defined by the triggering of proteolytic enzymes that cause
cell lysis, changes in the activity of Na*-K*-ATPase and Ca?*-ATPase increase necrosis development via calcium
development. As a result of the findings, it is possible to conclude that codeine can cause hepatic atrophy and is
associated with hepatic cachexia (Akhigbe et al., 2020). It is not unreasonable to assume that Codeine-induced
oxidative injury is coupled with an increase in nitric oxide (NO) production. The results of this investigation
demonstrated that codeine administration increased the levels of NO and the non-infectious inflammatory marker
TNF- in the liver. NO is known to regulate a wide range of biological activities. The concentration, cellular redox
state, metal abundance, protein thiols, low-molecular-weight thiols (glutathione), and other nucleophile targets
all have an impact on its effects (Vaja & Rana, 2023). Though NO can work as a detoxifying agent and remove
superoxide, causing cell toxicity, its interaction with superoxide may also result in the production of peroxynitrite,
a strong oxidant that decomposes to produce hydroxyl radicals under certain conditions (Vaja & Rana, 2023).

Kidneys

The kidneys' role in tramadol breakdown and elimination renders them vulnerable to toxic injury. The kidneys
discharge drug metabolites, and some of these can cause cellular damage, leading to renal illness. The amounts of
creatinine and urea in the blood are two typical biochemical indicators used to assess renal function (Treacy et
al,, 2019). Plasma creatinine levels are used to quantify glomerular filtration rate, whereas urea levels are utilized
to assess xenobiotic nephrotoxicity (Besseling et al., 2021). Tramadol-treated rats' renal functions were shown to
be impaired in this study by a considerable rise in urea and creatinine concentrations in the plasma (Sheweita et
al., 2018). This finding supports earlier research and is a sign of renal toxicity, which causes a reduction in
glomerular filtration rate, resulting in a buildup of creatinine and urea in the blood.

Polyunsaturated fatty acids, which are ubiquitous in all cellular membranes, are susceptible to oxidative
peroxidative assaults, culminating in lipid peroxidation. As a consequence, lipid peroxidation was used to assess
oxidant-induced damage to cells (Harayama & Shimizu, 2020). Tramadol-treated patients had significantly higher
hepatic and renal malonaldehyde (MDA) levels. It has been found that higher MDA levels indicate an increase in
free radical formation and are regarded as a helpful indicator of oxidative stress state (Owoade et al., 2019).
However, in the opposite circumstance, tramadol treatment causes a large quantity of insatiable free radicals to
form, leading to oxidative stress (Owoade et al, 2019). This study found indications of antioxidant enzyme
suppression in the liver and kidneys of rats, including catalase (CAT), reduced glutathione (GSH), and superoxide
dismutase (SOD) (Ranjith et al., 2023). CAT, GSH, and SOD are antioxidant enzymes that help to scavenge oxidative
free radicals. The decrease in antioxidant enzymes identified in this study might be attributed to their depletion
as an outcome of tramadol-induced oxidative stress (Gusti et al.,, 2021).

Brain

Tramadol is a painkiller that is prescribed for the relief of moderate to severe pain; nevertheless, long-term
use has been related to a variety of negative consequences including oxidative DNA damage, oxidative stress,
inflammation apoptosis, and monoamine neurotransmitters (Mohamed & Mahmoud, 2019). The results
demonstrated that continuous tramadol treatment has a prooxidant impact, as evidenced by dramatically raised
levels of MDA and NO in rats' cerebrum. Brain tissue is especially sensitive to ROS degradation due to its high
quantities of polyunsaturated fatty acids and low levels of antioxidant defenses (Xia et al., 2020).

Along with greater peroxidation of lipids and NO, the rat cerebrum's GSH content and activity, as well as the
messenger RNA (mRNA) quantity of antioxidant enzymes SOD and GPx were all drastically lowered (Petrovic et
al,, 2020). The findings of this analysis supported previous research that demonstrated increased oxidative stress
after tramadol use. The outcomes from (Zhao et al., 2019), who reported a substantial reduction in the activity of
mitochondrial electron transport chain (ETC) complexes I, III, and IV in rats exposed to tramadol misuse, in
contrast to complex II, may explain the mechanism behind the increased formation of ROS from tramadol usage.
These findings suggest that tramadol-induced oxidative stress causes damage to the mitochondria. Furthermore,
inhibiting the D: receptors for dopaminergic alleviated drug-induced cellular damage and mitochondrial
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dysfunction, but activating them resulted in decreased GSH content, indicating that the system of dopamine
receptors plays a role in regulating tramadol effects in mice (Bameri et al., 2018).

Excessive ROS levels may cause cell membrane lipid peroxidation as well as DNA and protein damage, resulting
in cell death (Su et al,, 2019). ROS can irritate by stimulating the redox-sensitive regulatory factor (NF-B), which
leads to the production of a number of inflammatory mediators. In this study, NF-B activation was demonstrated
to be implicated in tramadol-induced inflammation in the rat cerebrum (Mittal et al.,, 2014). Tramadol therapy
caused an important and influenced by dose rise in NF-B p65 subunit, TNF-, and IL-6 mRNA abundance in the
brain. When NF-B is activated, a variety of cytokines, chemokines, and other inflammatory agents are released.
Tramadol-induced stimulation of cerebral NF-B has also been linked to considerably higher blood levels of TNF-
and IL-6. According to these observations, tramadol can promote both systemic and cerebral inflammation
(Nakhaee et al., 2021).

Tramadol increased iNOS, the gene and protein transcription in the rat cerebrum is dose-dependent, as well
as NF-B and pro-inflammatory cytokines. The significant increase in NO levels in tramadol-induced rats' cerebrum
is explained by enhanced iNOS expression (Mohamed & Mahmoud, 2019). NO can be cytotoxic, depending on the
redox condition of the cells. When exposed to oxidative stress, NO may mix with superoxide radicals to form
peroxynitrite, a potent oxidant that attacks and damages proteins and DNA (Le Gal et al., 2021). Both oxidative
damage and inflammation can trigger cell death through apoptosis. Tramadol-induced oxidative stress and
inflammation were associated with broad and dose-dependent elevations in pro-apoptotic biomarkers p53, Bax
gene, and protein expression (Gambini & Stromsnes, 2022). Tramadol can reduce the production of both
tramadol-induced rats' cerebrum contains the gene and protein of the anti-apoptotic biomarker Bcl-2, indicating
that tramadol has the capacity to cause cell death by apoptosis in rats. The Bcl-2 protein family, which includes
p53, Bax, and Bcl-2, controls apoptosis. Bcl-2, on the other hand, exerts an anti-apoptotic effect by suppressing
mitochondrial cytochrome c release (Mohamed & Mahmoud, 2019). As a consequence, in tramadol-induced rats,
increased ROS and RNS production caused a discrepancy in the Bcl-2 protein group and death in the cerebrum.

Tramadol is an anesthetic that is hypothesized to alleviate moderate to chronic pain is caused by reacting to
opioid receptors and thereby changing the noradrenergic, GABAergic, and serotonergic systems (Gong et al,,
2014). Ex vivo tramadol therapy has been shown to boost DA and DA metabolite release in certain brain regions.
Tramadol can impede NE absorption while increasing 5-HT release, which explains the much higher NE and 5-HT
levels found in the current study. It was discovered that continuous tramadol treatment enhanced the levels of
monoamine neurotransmitters in rats' cerebrum (Xia et al., 2020). Neurotransmitter alterations, as well as
inflammatory state, are linked to mental and emotional wellness. Recent research suggests that dysfunctional
serotonergic and dopaminergic neurotransmission causes central nervous system dysfunction (Teleanu et al.,
2022).

Heart

This review evaluated oxidative indicators in cardiac tissue following various amounts of opioid exposure. The
levels of stress indicators were higher than those produced by ischemia or preconditioning remifentanil. This high
oxidative stress milieu, which existed prior to the creation of ischemia reperfusion damage, lowered the
myocardium's susceptibility to opioid protection. It also caused DNA damage, as seen by increased cardiac 8-OHdG
levels (Xiang et al., 2021). Oxidative stress arises when the generation of damaging free radicals surpasses the
antioxidant defense's ability to combat and eliminate them (Sharifi-Rad et al., 2020). Because the level of SOD
remained stable, this oxidative stress is most likely the result of elevated reactive species production rather than
a decline in counter-regulation (Islam et al., 2022). Elevated oxidative stress in cells is regularly established with
high-dose opioid exposure, which is generally found over time, but the findings of this study suggest that
comparable increases can also be detected with short-term high-dose exposure (Dossena & Marino, 2021). It is
likely that continuous or high-dose opioid medication will overload the cell's antioxidant capability. Indeed, the
current investigation found that short-term high-dose remifentanil dramatically enhances myocardial superoxide
generation while also increasing oxidative stress (Dossena & Marino, 2021).

Excessive cellular oxidative stress in a cell can cause it to malfunction, pro-apoptotic, and even cytotoxic. It was
established in these studies that a high level of oxidative stress can also interfere with cellular activity (Forman &
Zhang, 2021). The absence of cardio-protection from high-dose remifentanil may be related to a disturbance in
protective signalling caused by elevated levels of free radicals and lipid peroxidation (Mei et al., 2013). It's also
probable that the increased oxidative stress produces secondary cell damage, as seen by elevated levels of
myocardial 8-OHdG, which suggests DNA damage. In these animals, administering antioxidants or medicines
containing antioxidants may substantially recover the myocardium's ability to be protected by preconditioning
and post-conditioning (Martins et al., 2021). It would be interesting to see if remifentanil’'s cardio-protective
qualities are affected by targeted antagonism of reactive oxygen or reactive nitrogen species at high doses.

Reproductive organs

Tramadol was classified as a narcotic, along with codeine and dextropropoxyphene, but it is now available with
a standard prescription (Edinoff et al., 2021). Tramadol is a synthetic derivative of codeine, a centrally acting
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analgesic medicine, and its toxicity and abuse were revealed as an atypical opioid, since it produces analgesia by
combining two opioids (Trescot et al., 2008). Physical and psychological dependence were the result of tramadol
addiction. It has been discovered that rising tramadol dose effects behavioral changes, namely restlessness,
hyperactivity, or increased excitability and convulsions (Fuseini et al., 2019). These findings might be linked to
tramadol biotransformation into an active metabolite, which is essential for substantial m-agonist effects; also,
the metabolite accumulation has a high affinity for the m-receptor, which may result in nervous system alterations
(Gong et al,, 2014).

This medication is a synthetic opioid that causes cellular damage by increasing LPO, which may be used as a
marker of ROS-induced cell damage. By triggering an inflammatory response, tramadol produces oxidative stress
in various organs, which is significantly reduced during the withdrawal phase (Pathan & Williams, 2012). This
inflammatory response has previously been demonstrated to generate oxidative stress in animals by causing
changes in cell membrane fatty acid content after tramadol therapy, resulting in a decrease in fluidity (Chen et al,,
2018). This impact was accompanied with a considerable decrease in antioxidant enzymatic activity, such as SOD,
GSH, and CAT as well as an increase in MDA levels (Edinoff et al.,, 2021). According to a recent study, tramadol
administration resulted in an increase in apoptotic spermatogenic cells as well as a decrease in testosterone and
total cholesterol (Ibrahim & Salah-Eldin, 2019). These may enhance spermatogenic cell damage by increasing ROS.
Previous research indicated that because the plasma membrane of testicular cells and the sperm is rich in
polyunsaturated fatty acids, they are susceptible to oxidative damage induced by free radicals. Cellular membrane
LPO may eventually lead to cell dysfunction and structural damage. As a result, the alterations found in testicular
structures, such as germ and Leydig cells, may be related to tramadol-induced peroxidation of polyunsaturated
fatty acids in their plasma membranes (Mannucci et al.,, 2022).

Tramadol abuse and withdrawal, like at the cellular level, contribute to a reducing in the mRNA transcription
of the anti-apoptotic Bcl-2 followed by a rise in the pro-apoptotic index Bax and Caspase-3 production in testicular
organs (Ibrahim & Salah-Eldin, 2019). High levels of Bax protein expression, despite low levels from the
expression of Bcl-2, result in a high Bax/Bcl-2 ratio, which promotes apoptosis in numerous tissues and cancer
cells. The researchers discovered a substantial increase in the Bax/Bcl-2 gene expression ratio following tramadol
therapy and withdrawal, which might have resulted in testicular degeneration due to apoptosis. The increased
production of pro-apoptotic genes Bax and caspase-3 was coupled by a reduction in the expression of anti-
apoptotic Bcl-2, indicating that tramadol is hazardous at levels within cells and can cause apoptosis in the testis
(Cahyadi et al., 2022). These can have an impact on spermatogenesis and sperm motility. However, to avoid
tramadol toxicity, more suitable limitations and reevaluations of this prescription must be implemented.

Effects of oxidative stress caused by opioid drugs on organelles
Mitochondria

Mitochondria are well-known essential organelle which is the power-house of the cells, also an important
source of the ROS formation (Singh, 2021). One of the factor influencing ROS is from the mitochondrial electron
transport chain (ETC), which is the key element of oxidative phosphorylation. During ETC, electrons pass through
a sequence of protein complexes (Complexes [-1V) in the inner mitochondrial membrane. As electrons flow down
the chain, certain seep out and integrate with molecules of oxygen (0;), forming superoxide radicals (0;7)
(Murphy, 2009). Next is Complex I (NADH dehydrogenase), the primary mechanism for ROS generation. When
electrons from NADH enter Complex I, some leave and react with O, to produce 0,". This mechanism happens
mostly when mitochondria are not actively making Adenosinetriphosphate (ATP) or energy (Okoye et al., 2023).
Lastly, ubiquinone (CoQ) and cytochrome C are additionally capable of creating ROS. CoQ, which transports
electrons between Complexes I and III, may release electrons and generate O,~, whereas, cytochrome C produced
during apoptosis (Zhao et al., 2019).

A study done by Picca et al (2020) stated that, improper balance of mitochondrial fission and fusion, which
leads to dysfunction of the mitochondria, is one of the primary pathogenic events in the course of MI/R damage.
As a result, increased mitochondrial fusion may be essential for balancing the dynamics of mitochondria and
maintaining the function of the mitochondria. Optic atrophy 1 (OPA1), which is predominantly located in
mitochondrial inner membranes, affects not only mitochondrial fusion but also mitochondrial respiration (Ding
et al,, 2020). Reduced OPA1 expression in MI/R injury exacerbates fragmentation of mitochondria, leading to
impaired mitochondrial function, notably mitochondrial oxidative damage, leakage adjustment port opening, and
mitochondrial death, all of which contribute to MI/R injury development (Sun et al., 2020).

Opioids and their binding sites are well acknowledged for their existence in the nervous system and their
capacity to reduce pain, making them important in the treatment of a range of human illnesses (Spetea &
Schmidhammer, 2020). They are specifically distributed throughout the cardiovascular system and have a role in
the control of cardiovascular function (Pathan & Williams, 2012). The Kappa-Opioid Receptor (KOR) is a major
opioid receptor subtype found in cardiac tissue. Numerous studies have revealed that KOR activation is important
in the prevention of cardiovascular illnesses such as myocardial ischemia, cardiac hypertrophy, and heart failure
(Wang et al, 2020). KOR activation has been demonstrated to increase durability against MI/R damage by
preventing arrhythmias and enhancing the contraction of the myocardium (Tian et al., 2019).
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The study revealed that KOR engagement via U50,488H decreased infarct areas and enhanced cardiac function
in the setting of MI/R damage and that the KOR antagonist nor-BNI counteracted these effects. Furthermore,
U50,488H lowered cardiomyocyte apoptosis and oxidative stress in MI/R rats, and these effects were prevented
by the KOR antagonist nor-BNI, suggesting that U50,488H has protective benefits in MI/R damage and that these
advantages are at least partly mediated by KOR activation (Wang et al., 2020). Furthermore, results reveal that
OPA1 not only regulates reactive oxygen species formation, but also limits cell death by suppressing the release
of mitochondrial apoptotic proteins (Quintana-Cabrera et al.,, 2021). As a result, KOR activation-induced OPA1
overexpression protects the heart from MI/R damage in part by lowering oxidative stress and cardiomyocyte
apoptosis.

Endoplasmic reticulum

Chronic morphine usage resulted in oxidative stress with a drop in glutathione levels, lipid peroxide MDA
levels, and peroxynitrite generation, which happened simultaneously with the development of tolerance and
dependence (Skrabalova et al., 2013). Antioxidants that target peroxynitrite production, such as thymoquinone,
reversed biochemical alterations as well as morphine tolerance and dependency (Flieger et al.,, 2021). This study
found that both single-dose morphine and continuous consumption of morphine for tolerance building reduce
antioxidant status (TAS) in the DRG, which is consistent with previous studies. It might suggest that morphine
usage lowers the antioxidant system, which could contribute to tolerance development. This study also discovered
that both single-dose and long-term morphine treatment induce oxidative stress (TOS) in the DRG. Furthermore,
protracted morphine treatment raised TOS levels in single-dose patients more than in DRG patients. This may be
associated with the development of tolerance (Zeng et al., 2020).

Endoplasmic reticulum (ER) stress is related to neuropathic and inflammatory pain processes. Furthermore,
ER stress stimulation has been found in the peripheral nerve system of nephropathy associated with diabetes rats
(Inceoglu et al,, 2015). Additionally, ER stress has been linked to morphine analgesia and tolerance mechanisms
in a few recent investigations. It was also discovered that following tolerance, PERK/elF2a the activation of the
ER stress response pathway in the spinal cord increased. In this study, ER stress proteins (elF-2a, ATF-4, and
CHOP) were shown to be increased in DRG following single-dose and chronic morphine therapy. (Liu et al., 2018).
Chronic morphine treatment, on the other hand, elevated ER stress proteins in DRG more than single-dose
morphine administration. Previous research has found that morphine tolerance promotes neuronal death by
influencing cellular processes such as oxidative damage and ER stress (Taskiran & Avci, 2021). According to the
findings of this review, Morphine tolerance triggered apoptosis in the DRG via increasing caspase-3 and bax levels.
This corresponds to earlier research. Despite enhanced oxidative and ER stress, a single acute dosage of morphine
did not induce apoptosis. It might be related to the fact that DRG has an apoptotic threshold (Taskiran & Avci,
2021).

The contrast of opioid withdrawal symptoms in male and female

Morphine and oxycodone serve as full agonists on Mu-Opioid receptors (MORs), and their activation results in
the drugs' significant analgesic and rewarding effects (Pantouli et al., 2021). Oxycodone has a lower affinity for
MORs than morphine and hence travels more freely through the blood-brain barrier. However, dependency on
both medications grow fast, resulting in comparable withdrawal symptoms when they are halted. (Umukoro et
al,, 2021). Numerous research in the disciplines of pain and stress have been conducted to investigate the
molecular and cellular processes behind sex variations in opioid responses.

According to the findings of this study, previous usage of protracted, increasing dosage morphine therapy
followed by withdrawal improves male oxycodone self-administration (SA) but reduces female oxycodone SA
maintenance and motivation. Repeated opioid exposure can result in opioid-induced hyperalgesia, a syndrome
characterized by enhanced pain sensitivity (Mavrikaki et al, 2021). A recent study has implemented that the
underpinning mechanisms of opioid-induced hyperalgesia may differ by gender; nevertheless, it is uncertain
whether hyperalgesia supports or discourages opioid misuse (Wilson et al.,, 2021).

The overall assumption that males exhibit worse morphine withdrawal symptoms than females align with
accumulating data that opioid drugs are frequently notably stronger in men (Bobzean et al., 2019). Numerous
studies imply that this is due to gender differences in MOR density in different brain regions rather than
pharmacokinetics. However, it would be impossible to equalize morphine dosages in order to produce comparable
behavioral outcomes since each behavior is likely the result of various neurological networks and diverse
arrangements of MOR concentrations and operational activity (Listos et al., 2019).

The review additionally pointed out that throughout the 8 days of maintenance, SA morphine-treated men
increased, but SA morphine-treated females did not. The latter outcome in females might be attributable to a
decrease in tolerance, a decrease in the rewarding effect of oxycodone, a rise in responsiveness to oxycodone
reward, or an upsurge in sensibility to oxycodone's negative consequences (Dumas & Pollack, 2008). According
to the study's findings, females who had previously been exposed to morphine SA less oxycodone in the dosage
response and had alower PR break threshold, reflecting a decreased willingness to work for the medicine, possibly
due to greater sensitivity to the drug's negative effects. Women, for example, have lower (MOR) contributions and
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function in pain and stress-related areas such as the periaqueductal grey and locus coeruleus than men, with
evidence suggesting estrogen is implicated (Mavrikaki et al., 2021). In addition, chronic morphine has been related
to preferential absorption of MOR in male locus coeruleus but not females, as well as an estrogen-potentiated flip
of MOR coupling from Gm/o to GPS proteins in females (Mavrikaki et al., 2021).

CONCLUSION

All studies that been reviewed shows the possible effects of opioid drugs on one’s body. In conclusion, oxidative
stress plays a main role on disrupting the normal physiology that lead to malfunction of certain organs, such as
kidney, brain, liver, heart, and reproductive as well as organelles, mainly mitochondria and endoplasmic reticulum
due to the overconsumption of opioid drugs. Especially in the brain, drug addiction has major consequences for
oxidative stress, which is a critical factor in the neurobiological implications of persistent drug use, including
oxidative stress and neuroinflammation in the brain. Oxidative stress is caused by an imbalance between reactive
oxygen species (ROS) production and antioxidant defences, while neuroinflammation is characterised by the
activation of immune cells (microglia) and the production of proinflammatory chemicals, in fact both processes
disturb normal brain function and contribute to addictive behaviours. These findings encourage for more
researchers to come out with prevention or alternative treatment to overcome this long-term major problem that
been occurred since decades ago. However, all are aware that it is a time consuming to be able to produce such
outcome considering the ethical consideration and budget.
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