Microplastics - an emerging silent menace to public health
PDF - Full Paper

Keywords

Microplastics, plastic additives, translocation, health

How to Cite

Pang, L.-Y., Sonagara, S., Oduwole, O., Gibbins, C., & Kang Nee, T. (2021). Microplastics - an emerging silent menace to public health. Life Sciences, Medicine and Biomedicine, 5(10). https://doi.org/10.28916/lsmb.5.10.2021.72

Abstract

Over the past few decades, microplastics have become increasingly ubiquitous in the environment and now contaminate the bodies of many living organisms, including humans. Microplastics, as defined here, are plastics within the size range 0.1 μm and 5 mm and are a worrying form of pollution due to public health concerns. This mini-review aims to summarise the route of entry of microplastics into humans and explore the potential detrimental health effects of microplastics. Trophic transfer is an important pathway for microplastic to be transferred across different groups of organisms, with ingestion is regarded as one of the major routes of exposure for humans. Other pathways include inhalation and dermal contact. The health consequences of microplastics manifest because these materials can translocate into the circulatory system and accumulate in the lungs, liver, kidney, and even brain, regardless of the route of entry. Health effects include gastrointestinal disturbances such as inflammation and gut microbiota disruption, respiratory conditions, neurotoxicity and potential cancers. Overall, while it is apparent that microplastics are causing adverse effects on different biological groups and ecosystems, current research is largely focused on marine organisms and aquaculture. Therefore, more studies are needed to investigate specific effects in mammalian cells and tissues, with more long-term epidemiological studies needed on human population considered to be at high-risk due to socioeconomic or other circumstance. Knowledge of the toxicity and long-term health impacts of microplastics is currently limited and requires urgent attention.

https://doi.org/10.28916/lsmb.5.10.2021.72
PDF - Full Paper

References

Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F. J., Dominguez, A. O., & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153-164.

https://doi.org/10.1016/j.envpol.2018.10.039

Atis, S., Tutluoglu, B., Levent, E., Ozturk, C., Tunaci, A., Sahin, K., … Nemery, B. (2005). The respiratory effects of occupational polypropylene flock exposure. European Respiratory Journal, 25(1), 110-117.

https://doi.org/10.1183/09031936.04.00138403

Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A. K., & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133(January), 336-348.

https://doi.org/10.1016/j.marpolbul.2018.05.047

Barboza, L. G. A., Vieira, L. R., Branco, V., Figueiredo, N., Carvalho, F., Carvalho, C., & Guilhermino, L. (2018). Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquatic Toxicology, 195, 49-57.

https://doi.org/10.1016/j.aquatox.2017.12.008

Brennecke, D., Ferreira, E. C., Costa, T. M. M., Appel, D., da Gama, B. A. P., & Lenz, M. (2015). Ingested microplastics (>100μm) are translocated to organs of the tropical fiddler crab Uca rapax. Marine Pollution Bulletin, 96(1-2), 491-495.

https://doi.org/10.1016/j.marpolbul.2015.05.001

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science and Technology, 45(21), 9175-9179.

https://doi.org/10.1021/es201811s

Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science and Technology, 42(13), 5026-5031.

https://doi.org/10.1021/es800249a

Burkhart, J., Piacitelli, C., Schwegler-Berry, D., & Jones, W. (1999). Environmental study of nylon flocking process. Journal of Toxicology and Environmental Health - Part A, 57(1), 1-23.

https://doi.org/10.1080/009841099157836

Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., & Owen, L. J. (2015). Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health & Disease, 26(0).

https://doi.org/10.3402/mehd.v26.26191

Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C., & Henry, T. B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675-684.

https://doi.org/10.1016/j.envpol.2018.02.069

Cho, Y., Shim, W. J., Jang, M., Han, G. M., & Hong, S. H. (2019). Abundance and characteristics of microplastics in market bivalves from South Korea. Environmental Pollution, 245, 1107-1116.

https://doi.org/10.1016/j.envpol.2018.11.091

Cortez Pimentel, J., Avila, R., & Galvao Lourenco, A. (1975). Respiratory disease caused by synthetic fibres: a new occupational disease. Thorax, 30(2), 204-219.

https://doi.org/10.1136/thx.30.2.204

Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human Consumption of Microplastics. Environmental Science and Technology, 53(12), 7068-7074.

https://doi.org/10.1021/acs.est.9b01517

De Sales-Ribeiro, C., Brito-Casillas, Y., Fernandez, A., & Caballero, M. J. (2020). An end to the controversy over the microscopic detection and effects of pristine microplastics in fish organs. Scientific Reports, 10(1).

https://doi.org/10.1038/s41598-020-69062-3

Della Torre, C., Bergami, E., Salvati, A., Faleri, C., Cirino, P., Dawson, K. A., & Corsi, I. (2014). Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environmental Science and Technology, 48(20), 12302-12311.

https://doi.org/10.1021/es502569w

Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7(April), 1-10.

https://doi.org/10.1038/srep46687

Ding, J., Zhang, S., Razanajatovo, R. M., Zou, H., & Zhu, W. (2018). Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environmental Pollution, 238, 1-9.

https://doi.org/10.1016/j.envpol.2018.03.001

Dong, C. Di, Chen, C. W., Chen, Y. C., Chen, H. H., Lee, J. S., & Lin, C. H. (2020). Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of Hazardous Materials, 385, 121575.

https://doi.org/10.1016/j.jhazmat.2019.121575

Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1-2), 290-293.

https://doi.org/10.1016/j.marpolbul.2016.01.006

Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 1-25.

https://doi.org/10.1186/s12302-015-0069-y

Egbeocha, C. O., Malek, S., Emenike, C. U., & Milow, P. (2018, September 19). Feasting on microplastics: Ingestion by and effects on marine organisms. Aquatic Biology, Vol. 27, pp. 93-106.

https://doi.org/10.3354/ab00701

Ellen MacArthur Foundation. (2016). The New Plastics Economy: Rethinking the future of plastics. Ellen MacArthur Foundation, (January), 120. Retrieved from https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics

Enyoh, C. E., Verla, A. W., Verla, E. N., Ibe, F. C., & Amaobi, C. E. (2019). Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environmental Monitoring and Assessment, 191(11).

https://doi.org/10.1007/s10661-019-7842-0

Essel, R., Ahrens, R. H., Engel, L., & Carus, M. (2015). Sources of microplastics relevant to marine protection. In Umweltbundesamt. Retrieved from https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_64_2015_sources_of_microplastics_relevant_to_marine_protection_1.pdf

European-Plastics. (2015). An analysis of European plastics production, demand and waste data. In Plastics - the Facts.

Fackelmann, G., & Sommer, S. (2019). Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Marine Pollution Bulletin, Vol. 143, pp. 193-203.

https://doi.org/10.1016/j.marpolbul.2019.04.030

Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3.

https://doi.org/10.1016/j.envpol.2013.01.046

Frias, J. P. G. L., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145-147.

https://doi.org/10.1016/j.marpolbul.2018.11.022

Galloway, T. S. (2015). Micro- and nano-plastics and human health. In Marine Anthropogenic Litter (pp. 343-366).

https://doi.org/10.1007/978-3-319-16510-3_13

Gong, M., Zhang, Y., & Weschler, C. J. (2014). Measurement of phthalates in skin wipes: Estimating exposure from dermal absorption. Environmental Science and Technology, 48(13), 7428-7435.

https://doi.org/10.1021/es501700u

Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, Vol. 344, pp. 179-199.

https://doi.org/10.1016/j.jhazmat.2017.10.014

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.

https://doi.org/10.1126/science.1260352

Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of the Total Environment, 649, 308-317.

https://doi.org/10.1016/j.scitotenv.2018.08.353

Jin, Y., Xia, J., Pan, Z., Yang, J., Wang, W., & Fu, Z. (2018). Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environmental Pollution, 235, 322-329.

https://doi.org/10.1016/j.envpol.2017.12.088

Karami, A., Golieskardi, A., Ho, Y. Bin, Larat, V., & Salamatinia, B. (2017). Microplastics in eviscerated flesh and excised organs of dried fish. Scientific Reports, 7(1), 1-9.

https://doi.org/10.1038/s41598-017-05828-6

Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a Vector for Chemicals in the Aquatic Environment: Critical Review and Model-Supported Reinterpretation of Empirical Studies. Environmental Science and Technology, Vol. 50, pp. 3315-3326.

https://doi.org/10.1021/acs.est.5b06069

Lauby-Secretan, B., Loomis, D., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., … Straif, K. (2013). Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. The Lancet Oncology, 14(4), 287-288.

https://doi.org/10.1016/S1470-2045(13)70104-9

Lehner, R., Weder, C., Petri-Fink, A., & Rothen-Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science and Technology, 53(4), 1748-1765.

https://doi.org/10.1021/acs.est.8b05512

Lehtiniemi, M., Hartikainen, S., Näkki, P., Engström-Öst, J., Koistinen, A., & Setälä, O. (2018). Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs, 17.

https://doi.org/10.1016/j.fooweb.2018.e00097

Lei, L., Liu, M., Song, Y., Lu, S., Hu, J., Cao, C., … He, D. (2018). Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environmental Science: Nano, 5(8), 2009-2020.

https://doi.org/10.1039/C8EN00412A

Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., … Zhang, Y. (2020). Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 244(5), 690-697.

https://doi.org/10.1016/j.chemosphere.2019.125492

Mastrangelo, G., Fedeli, U., Fadda, E., Milan, G., Turato, A., & Pavanello, S. (2003). Lung cancer risk in workers exposed to poly(vinyl chloride) dust: A nested case-referent study. Occupational and Environmental Medicine, 60(6), 423-428.

https://doi.org/10.1136/oem.60.6.423

Mastrangelo, Giuseppe, Fedeli, U., Fadda, E., Valentini, F., Agnesi, R., Magarotto, G., … Martines, D. (2004). Increased risk of hepatocellular carcinoma and liver cirrhosis in vinyl chloride workers: Synergistic effect of occupational exposure with alcohol intake. Environmental Health Perspectives, 112(11), 1188-1192.

https://doi.org/10.1289/ehp.6972

McGoran, A. R., Clark, P. F., Smith, B. D., & Morritt, D. (2020). High prevalence of plastic ingestion by Eriocheir sinensis and Carcinus maenas (Crustacea: Decapoda: Brachyura) in the Thames Estuary. Environmental Pollution, 265.

https://doi.org/10.1016/j.envpol.2020.114972

Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? DMM Disease Models and Mechanisms, 8(1), 1-16.

https://doi.org/10.1242/dmm.017400

Pedà, C., Caccamo, L., Fossi, M. C., Gai, F., Andaloro, F., Genovese, L., … Maricchiolo, G. (2016). Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution, 212, 251-256.

https://doi.org/10.1016/j.envpol.2016.01.083

Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702.

https://doi.org/10.1016/j.scitotenv.2019.134455

Praveena, S. M., Shaifuddin, S. N. M., & Akizuki, S. (2018). Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Marine Pollution Bulletin, 136, 135-140.

https://doi.org/10.1016/j.marpolbul.2018.09.012

Qiao, R., Sheng, C., Lu, Y., Zhang, Y., Ren, H., & Lemos, B. (2019). Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Science of the Total Environment, 662, 246-253.

https://doi.org/10.1016/j.scitotenv.2019.01.245

Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., … Bebianno, M. J. (2017). Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122(1-2), 379-391.

https://doi.org/10.1016/j.marpolbul.2017.06.078

Ritchie, H. (2019). Seafood Production. Retrieved November 9, 2020, from OurWorldInData.org website: https://ourworldindata.org/seafood-production

Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3.

https://doi.org/10.1038/srep03263

Rochman, C. M., Kross, S. M., Armstrong, J. B., Bogan, M. T., Darling, E. S., Green, S. J., … Veríssimo, D. (2015). Scientific Evidence Supports a Ban on Microbeads. Environmental Science and Technology, 49(18), 10759-10761.

https://doi.org/10.1021/acs.est.5b03909

Schwabl, P., Koppel, S., Konigshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine, 171(7), 453-457.

https://doi.org/10.7326/M19-0618

Shao, L., Wang, C., He, J., Wu, X., & Cheng, Y. (2013). Hepatopancreas and gonad quality of chinese mitten crabs fattened with natural and formulated diets. Journal of Food Quality, 36(3), 217-227.

https://doi.org/10.1111/jfq.12030

Sharma, M. D., Elanjickal, A. I., Mankar, J. S., & Krupadam, R. J. (2020). Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 398.

https://doi.org/10.1016/j.jhazmat.2020.122994

Sharma Shivika, & Chatterjee Subhankar. (2017). Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research, 24(27), 21530-21547.

https://doi.org/10.1007/s11356-017-9910-8

Sherman, M. (2009). Vinyl chloride and the liver. Journal of Hepatology, Vol. 51, pp. 1074-1081.

https://doi.org/10.1016/j.jhep.2009.09.012

Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018, September 1). Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports, Vol. 5, pp. 375-386.

https://doi.org/10.1007/s40572-018-0206-z

Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158.

https://doi.org/10.1016/j.aquaculture.2008.08.015

Tan, H., Yue, T., Xu, Y., Zhao, J., & Xing, B. (2020). Microplastics Reduce Lipid Digestion in Simulated Human Gastrointestinal System. Environmental Science & Technology, 54(19), 12285-12294.

https://doi.org/10.1021/acs.est.0c02608

Tang, Y., Zhou, W., Sun, S., Du, X., Han, Y., Shi, W., & Liu, G. (2020). Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa. Environmental Pollution, 265.

https://doi.org/10.1016/j.envpol.2020.115115

Turcotte, S. E., Chee, A., Walsh, R., Grant, F. C., Liss, G. M., Boag, A., … Lougheed, M. D. (2013). Flock worker's lung disease: Natural history of cases and exposed workers in Kingston, Ontario. Chest, 143(6), 1642-1648.

https://doi.org/10.1378/chest.12-0920

Verla, A. W., Enyoh, C. E., Verla, E. N., & Nwarnorh, K. O. (2019). Microplastic-toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Applied Sciences, 1(11).

https://doi.org/10.1007/s42452-019-1352-0

Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9(1), 1-11.

https://doi.org/10.1038/s41598-019-45054-w

Von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science and Technology, 46(20), 11327-11335.

https://doi.org/10.1021/es302332w

Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science and Technology, 51(12), 6634-6647.

https://doi.org/10.1021/acs.est.7b00423

Yin, L., Chen, B., Xia, B., Shi, X., & Qu, K. (2018). Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). Journal of Hazardous Materials, 360, 97-105.

https://doi.org/10.1016/j.jhazmat.2018.07.110

Yukioka, S., Tanaka, S., Nabetani, Y., Suzuki, Y., Ushijima, T., Fujii, S., … Singh, S. (2020). Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environmental Pollution, 256.

https://doi.org/10.1016/j.envpol.2019.113447

Zhu, B. K., Fang, Y. M., Zhu, D., Christie, P., Ke, X., & Zhu, Y. G. (2018). Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 239, 408-415.

https://doi.org/10.1016/j.envpol.2018.04.017

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Array