Microencapsulation of Lysiphyllum strychnifolium extract using pectin as a carrier matrix and its characterization
PDF

Keywords

Lysiphyllum strychnifolium
pectin
microencapsulation
spray-drying
characterization

How to Cite

Goli, A. S., Leanpolchareanchai, J., Chewchinda, S. ., Yahuafai, J. ., Nontakham, J. ., Sato, H. ., & Sato, V. H. . (2022). Microencapsulation of Lysiphyllum strychnifolium extract using pectin as a carrier matrix and its characterization. Life Sciences, Medicine and Biomedicine, 6(1). https://doi.org/10.28916/lsmb.6.1.2022.102

Abstract

Lysiphyllum strychnifolium (Craib) A. Schmitz (LS, Fabaceae) is one of the folklore medicines in Thailand. The previous studies have demonstrated several pharmacological activities and high polyphenolic substances possessed by this plant. However, the suitable encapsulation of LS extract has not been discovered. This study aimed to develop LS microcapsules using spray-drying technique with pectin as a carrier. Moreover, the powder analysis and characterization were also conducted. The effects of inlet temperatures (80, 100, and 120°C) and carrier concentrations (1, 5, and 10 %w/v) on the encapsulation yield (EY), encapsulation efficiency (EE), total phenolic content (TPC), and main markers (trilobatin and yanangdaengin) of LS microcapsules were studied. Finally, the characterization was investigated by Fourier transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The obtained results indicated that S2 microcapsule formulation, pectin to extract ratio 10:1 (w/w) at inlet temperature of 100°C, was chosen as the optimal condition because of the positive tendency to acquire higher EE as pectin level was increased. On the contrary, the level of TPC and markers was reduced due to the more addition of pectin. The FTIR, XRD, and DSC results suggested that the well-encapsulated microcapsules were obtained for S2 formulation and SEM represented the semi-spherical structure of its microstructures. The development of LS microcapsules with the proximity to gain the advantageous powder analysis and characteristic has been achieved. Therefore, this approach could be used for the subsequent manufacturing of LS extract.

https://doi.org/10.28916/lsmb.6.1.2022.102
PDF

References

Akbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry, 359, 1-13.

https://doi.org/10.1016/j.foodchem.2021.129965

Balakrishnan, M., Gayathiri, S., Preetha, P., Pandiselvam, R., Jeevarathinam, G., Delfiya, D. S. A., & Kothakota, A. (2021). Microencapsulation of bixin pigment by spray drying: evaluation of characteristics. LWT - Food Science and Technology, 145, 1-11.

https://doi.org/10.1016/j.lwt.2021.111343

Bunluepuech, K., Tewtrakul, S., & Wattanapiromsakul, C. (2019). Alpha-glucosidase inhibitory activity of compounds from Bauhinia strychnifolia. Journal of Chemical and Pharmaceutical Research, 11(6), 22-26.

Bunluepuech, K., Wattanapiromsakul, C., Madaka, F., & Tewtrakul, S. (2013). Anti-HIV-1 integrase and anti-allergic activities of Bauhinia strychnifolia. Songklanakarin Journal of Science and Technology, 35(6), 659-664.

Chamratpan, S., & Homchuen, S. A. (2005). Ethnobotany in upper Northeastern Thailand. Acta Horticulturae, 675, 67-74.

https://doi.org/10.17660/ActaHortic.2005.675.8

Correa-Filho, L. C., Lourenco, M. M., Moldao-Martins, M., & Alves, V. D. (2019). Microencapsulation of beta-carotene by spray drying: effect of wall material concentration and drying inlet temperature. International Journal of Food Science, 2019, 1-12.

https://doi.org/10.1155/2019/8914852

da Cruz, M. C. R., Dagostin, J. L. A., Perussello, C. A., & Masson, M. L. (2019). Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation. Food Hydrocolloids, 87, 71-82.

https://doi.org/10.1016/j.foodhyd.2018.07.043

da Silva, P. T., Fries, L. L. M., de Menezes, C. R., Holkem, A. T., Schwan, C. L., Wigmann, É. F., Bastos, J. d. O., & da Silva, C. d. B. (2014). Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Ciencia Rural, 44(7), 1304-1311.

https://doi.org/10.1590/0103-8478cr20130971

de Moura, S. C. S. R., Berling, C. L., Germer, S. P. M., Alvim, I. D., & Hubinger, M. D. (2018). Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: pigment stability during storage of microparticles. Food Chemistry, 241, 317-327.

https://doi.org/10.1016/j.foodchem.2017.08.095

Díaz-Bandera, D., Villanueva-Carvajal, A., Dublán-García, O., Quintero-Salazar, B., & Dominguez-Lopez, A. (2015). Assessing release kinetics and dissolution of spray-dried Roselle (Hibiscus sabdariffa L.) extract encapsulated with different carrier agents. LWT - Food Science and Technology, 64(2), 693-698.

https://doi.org/10.1016/j.lwt.2015.06.047

Emadzadeh, B., Ghorani, B., Naji-Tabasi, S., Charpashlo, E., & Molaveisi, M. (2021). Fate of β-cyclodextrin-sugar beet pectin microcapsules containing garlic essential oil in an acidic food beverage. Food Bioscience, 42, 1-10.

https://doi.org/10.1016/j.fbio.2021.101029

Fernandes, L. P., Candido, R. C., & Oliveira, W. P. (2012). Spray drying microencapsulation of Lippia sidoides extracts in carbohydrate blends. Food and Bioproducts Processing, 90(3), 425-432.

https://doi.org/10.1016/j.fbp.2011.12.001

Gharsallaoui, A., Roudaut, G., Beney, L., Chambin, O., Voilley, A., & Saurel, R. (2012). Properties of spray-dried food flavours microencapsulated with two-layered membranes: roles of interfacial interactions and water. Food Chemistry, 132(4), 1713-1720.

https://doi.org/10.1016/j.foodchem.2011.03.028

Guo, J., Li, P., Kong, L., & Xu, B. (2020). Microencapsulation of curcumin by spray drying and freeze drying. LWT - Food Science and Technology, 132, 1-6.

https://doi.org/10.1016/j.lwt.2020.109892

Hao, H., Zhang, D. X., Zhang, M. Y., Guo, L. X., & Li, S. J. (2003). Phylogenetics of Bauhinia subgenus Phanera (Leguminosae: Caesalpinioideae) based on its sequences of nuclear ribosomal DNA. Botanical Bulletin of Academia Sinica, 44, 223-228.

Indrawati, R., Sukowijoyo, H., Indriatmoko, Wijayanti, R. D. E., & Limantara, L. (2015). Encapsulation of brown seaweed pigment by freeze drying: characterization and its stability during storage. Procedia Chemistry, 14, 353-360.

https://doi.org/10.1016/j.proche.2015.03.048

Itharat, A., & Sayompark, S. (2016). In vitro antioxidant activities of extracts of Bauhinia strychnifolia stems and leaves: comparison with activities in green tea extracts. Medicinal & Aromatic Plants, 5(3), 1-7.

Kang, J., Hua, X., Yang, R., Chen, Y., & Yang, H. (2015). Characterization of natural low-methoxyl pectin from sunflower head extracted by sodium citrate and purified by ultrafiltration. Food Chemistry, 180, 98-105.

https://doi.org/10.1016/j.foodchem.2015.02.037

Kongkiatpaiboon, S., Duangdee, N., Tayana, N., Schinnerl, J., Bacher, M., & Chewchinda, S. (2020). Yanangdaengin, a dihydrochalcone glucoside galloyl ester as active antioxidative agent from leaves of Lysiphyllum strychnifolium (syn. Bauhinia strychnifolia). Chinese Herbal Medicines, 12(4), 452-455.

https://doi.org/10.1016/j.chmed.2020.05.009

Kurahayashi, K., Hanaya, K., Higashibayashi, S., & Sugai, T. (2018). Synthesis of trilobatin from naringin via prunin as the key intermediate: acidic hydrolysis of the alpha-rhamnosidic linkage in naringin under improved conditions. Bioscience, Biotechnology, and Biochemistry, 82(9), 1463-1467.

https://doi.org/10.1080/09168451.2018.1482455

Larsen, K., & Larsen, S. S. (1984). Leguminosae-Caesalpinioideae flora of Thailand (Vol. 4). Bangkok: TISTR Press.

Luengthong, N., Lin, C., Muangman, V., & Wongyai, S. (2016). Preliminary study of the effect of Bauhinia strychnifolia Craib on blood alcohol levels in healthy volunteers. African Journal of Traditional, Complementary and Alternative Medicines, 12(2), 177-188.

Luo, Y., Pan, K., & Zhong, Q. (2015). Casein/pectin nanocomplexes as potential oral delivery vehicles. International Journal of Pharmaceutics, 486(1-2), 59-68.

https://doi.org/10.1016/j.ijpharm.2015.03.043

Maitree, M., Sato, V. H., Sithisarn, P., & Chewchinda, S. (2018). Evaluation of antioxidant activities and HPTLC analysis of Lysiphyllum strychnifolium (Craib) A. Schmitz leaf extract. Thai Journal of Pharmaceutical Sciences, 42, 22-26.

Mishra, P., Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252-258.

https://doi.org/10.1016/j.fbp.2013.08.003

Moghbeli, S., Jafari, S. M., Maghsoudlou, Y., & Dehnad, D. (2019). Influence of pectin-whey protein complexes and surfactant on the yield and microstructural properties of date powder produced by spray drying. Journal of Food Engineering, 242, 124-132.

https://doi.org/10.1016/j.jfoodeng.2018.08.025

Navidad-Murrieta, M. S., Perez-Larios, A., Sanchez-Burgos, J. A., Ragazzo-Sanchez, J. A., Luna-Barcenas, G., & Sayago-Ayerdi, S. G. (2020). Use of a Taguchi design in Hibiscus sabdariffa extracts encapsulated by spray-drying. Foods, 9(2), 1-13.

https://doi.org/10.3390/foods9020128

Nunes, G. L., Boaventura, B. C. B., Pinto, S. S., Verruck, S., Murakami, F. S., Prudêncio, E. S., & de Mello Castanho Amboni, R. D. (2015). Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of Food Engineering, 151, 60-68.

https://doi.org/10.1016/j.jfoodeng.2014.10.031

Rahmani, Z., Khodaiyan, F., Kazemi, M., & Sharifan, A. (2020). Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules, 147, 1107-1115.

https://doi.org/10.1016/j.ijbiomac.2019.10.079

Rangelova, N., Aleksandrov, L., & Nenkova, S. (2017). Synthesis and characterization of pectin/SiO2 hybrid materials. Journal of Sol-Gel Science and Technology, 85(2), 330-339.

https://doi.org/10.1007/s10971-017-4556-z

Ribeiro, A. C. B., Cunha, A. P., Ribeiro, M. E. N. P., Trevisan, M. T. S., Azul, F. V. C. S., Leal, L. K. A. M., & Ricardo, N. M. P. S. (2021). Cashew apple pectin as a carrier matrix for mangiferin: physicochemical characterization, in vitro release and biological evaluation in human neutrophils. International Journal of Biological Macromolecules, 171, 275-287.

https://doi.org/10.1016/j.ijbiomac.2021.01.001

Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2019). Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus nigra L. extracts - A review. Trends in Food Science and Technology, 105, 1-14.

https://doi.org/10.1016/j.tifs.2019.03.011

Saenz, C., Tapia, S., Chavez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616-622.

https://doi.org/10.1016/j.foodchem.2008.09.095

Sampaopan, Y., Kitprapiumpon, N., Kongkiatpaiboon, S., Duangdee, N., & Wongyai, K. S. (2021). Isolation and HPLC analysis of astilbin in Lysiphyllum strychnifolium (syn. Bauhinia strychnifolia) stems. Science & Technology Asia, 26(1), 208-215.

Sansone, F., Mencherini, T., Picerno, P., d'Amore, M., Aquino, R. P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105(3), 468-476.

https://doi.org/10.1016/j.jfoodeng.2011.03.004

Sato, V. H., Chewchinda, S., Nuamnaichati, N., Mangmool, S., Sungthong, B., Lertsatitthanakorn, P., Ohta, S., & Sato, H. (2019). Pharmacological mechanisms of the water leaves extract of Lysiphyllum strychnifolium for its anti-inflammatory and anti-hyperuricemic actions for gout treatment. Pharmacognosy Magazine, 15(60), 98-106.

https://doi.org/10.4103/pm.pm_14_18

Sukprasert, S., Deenonpoe, R., Yimsoo, T., Yingmema, W., Prasopdee, S., Krajang, A., Kornthong, N., Pattaraarchachai, J., & Daduang, S. (2020a). Antidote activity and protective effects of Lysiphyllum strychnifolium (Craib) A. Schmitz extract against organophosphate pesticide in omethoate-treated rats. Journal of Traditional and Complementary Medicine, 11(3), 189-196.

https://doi.org/10.1016/j.jtcme.2020.03.001

Sukprasert, S., Pansuksan, K., & Sriyakul, K. (2020b). Lysiphyllum strychnifolium (Craib) A. Schmitz extract, a novel neuraminidase inhibitor of avian influenza virus subtype H5N1. Journal of Herbal Medicine, 20, 1-6.

https://doi.org/10.1016/j.hermed.2020.100330

Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: development and characterization. Journal of Biotechnology, 239, 23-33.

https://doi.org/10.1016/j.jbiotec.2016.10.001

Vityazev, F. V., Fedyuneva, M. I., Golovchenko, V. V., Patova, O. A., Ipatova, E. U., Durnev, E. A., Martinson, E. A., & Litvinets, S. G. (2017). Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract. Carbohydrate Polymers, 157, 9-20.

https://doi.org/10.1016/j.carbpol.2016.09.048

Xu, G., Guan, L., Sun, J., & Chen, Z. Y. (2009). Oxidation of cholesterol and beta-sitosterol and prevention by natural antioxidants. Journal of Agricultural and Food Chemistry, 57(19), 9284-9292.

https://doi.org/10.1021/jf902552s

Yuenyongsawad, S., Bunluepuech, K., Wattanapiromsakul, C., & Tewtrakul, S. (2013). Anti-cancer activity of compounds from Bauhinia strychnifolia stem. Journal of Ethnopharmacology, 150(2), 765-769.

https://doi.org/10.1016/j.jep.2013.09.025

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Array