Fabrication of ciprofloxacin loaded alginate/cockle shell powder nanobiocomposite bone scaffold
PDF

Keywords

Cockle shell powder
alginate
ciprofloxacin
drug delivery
antibacterial

How to Cite

Fabrication of ciprofloxacin loaded alginate/cockle shell powder nanobiocomposite bone scaffold. (2023). Life Sciences, Medicine and Biomedicine, 7(1). https://doi.org/10.28916/lsmb.7.1.2023.111

Abstract

Orthopedic implant infection is one of the most challenging issues in bone tissue engineering industry. Hence, local delivery of antibiotics incorporated into a fabricated bone scaffold possibly provides a more rapid bacteria inhibitory effect. In this study, pure ciprofloxacin loaded alginate/cockle shell powder nanobiocomposite bone scaffolds are fabricated with 5 wt% and 10 wt% ciprofloxacin respectively and tested for drug encapsulation, drug release and antibacterial properties towards common implant infecting bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa). Results from the studies showed a low drug encapsulation and drug release regardless of the concentration of drugs loaded with no significant differences noted (p<0.05). However, bacterial inhibition studies through direct contact and using eluted samples from drug release studies showed some inhibitory effects towards the growth of both bacterial strains tested. These findings were further justified with microscopy observations on biofilm and bacterial colony formation. Mineralization studies conducted additionally indicated that the scaffolds characteristics was not compromised due to drug loading. Although pure ciprofloxacin may not be the most suitable antibiotic to be incorporated into the nanobiocomposite bone scaffold, the study did provide some insight to the possible use of the scaffold for future drug delivery applications.

PDF

References

Bharatham, B. H., Bakar, A., Zuki, M., Perimal, E. K., Yusof, L. M., & Hamid, M. (2014). Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold. BioMed Research International,

https://doi.org/10.1155/2014/146723

Breda, S. A., Jimenez-Kairuz, A. F., Manzo, R. H., & Olivera, M. a. E. (2009). Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. International journal of pharmaceutics, 371(1-2), 106-113.

https://doi.org/10.1016/j.ijpharm.2008.12.026

Calori, G. M., Mazza, E., Colombo, M., & Ripamonti, C. (2011). The use of bone-graft substitutes in large bone defects: any specific needs? Injury, 42, S56-S63.

https://doi.org/10.1016/j.injury.2011.06.011

Cao, Z., Jiang, D., Yan, L., & Wu, J. (2017). In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold. International Journal of Nanomedicine, 12, 1841-1851.

https://doi.org/10.2147/IJN.S122864

Corvec, S. p., Portillo, M. E., Pasticci, B. M., Borens, O., & Trampuz, A. (2012). Epidemiology and new developments in the diagnosis of prosthetic joint infection. The International journal of artificial organs, 35(10), 923-934.

https://doi.org/10.5301/ijao.5000168

Hariyadi, D. M., & Hendradi, E. (2020). Optimization performance and physical stability of ciprofloxacin HCLCA alginate microspheres: Effect of different concentration of alginate and CACL2. International Journal of Drug Delivery Technology, 10(1), 89-94.

Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543.

https://doi.org/10.1016/s0142-9612(00)00121-6

Isa, T., Zakaria, Z. A. B., Rukayadi, Y., Mohd Hezmee, M. N., Jaji, A. Z., Imam, M. U., Hammadi, N. I., & Mahmood, S. K. (2016). Antibacterial activity of ciprofloxacin-encapsulated cockle shells calcium carbonate (Aragonite) nanoparticles and its biocompatability in macrophage J774A. 1. International journal of molecular sciences, 17(5), 713.

https://doi.org/10.3390/ijms17050713

Islam, K. N., Zuki, A. B. Z., Ali, M. E., Hussein, M. Z. B., Noordin, M. M., Loqman, M. Y., Wahid, H., Hakim, M. A., & Hamid, S. B. A. (2012). Facile synthesis of calcium carbonate nanoparticles from cockle shells. Journal of Nanomaterials, 2012, 2-2.

https://doi.org/10.1155/2012/534010

Jovic, T. H., Combellack, E. J., Jessop, Z. M., & Whitaker, I. S. (2020). 3D Bioprinting and the Future of Surgery. Frontiers in surgery, 7, 609836.

https://doi.org/10.3389/fsurg.2020.609836

Kanczler, J. M., & Oreffo, R. O. (2008). Osteogenesis and angiogenesis: the potential for engineering bone. European Cells & Materials, 15, 100-114.

https://doi.org/10.22203/ecm.v015a08

Kretlow, J. D., & Mikos, A. G. (2007). Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue engineering, 13(5), 927-938.

https://doi.org/10.1089/ten.2006.0394

Krishnan, A. G., Jayaram, L., Biswas, R., & Nair, M. (2015). Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded Gelatin–Hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Engineering Part A, 21(7-8), 1422-1431.

https://doi.org/10.1089/ten.TEA.2014.0605

Lecaroz, C., Gamazo, C., & Blanco-Prieto, M. J. (2006). Nanocarriers with gentamicin to treat intracellular pathogens. Journal of nanoscience and nanotechnology, 6(9-10), 3296-3302.

https://doi.org/10.1166/jnn.2006.478

Lin, L., Shao, J., Ma, J., Zou, Q., Li, J., Zuo, Y., Yang, F., & Li, Y. (2019). Development of ciprofloxacin and nano-hydroxyapatite dual-loaded polyurethane scaffolds for simultaneous treatment of bone defects and osteomyelitis. Materials Letters, 253, 86-89.

https://doi.org/10.1016/j.matlet.2019.06.028

Moriarty, T. F., Kuehl, R., Coenye, T., Metsemakers, W.-J., Morgenstern, M., Schwarz, E. M., Riool, M., Zaat, S. A. J., Khana, N., & Kates, S. L. (2016). Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT open reviews, 1(4), 89.

https://doi.org/10.1302/2058-5241.1.000037

Mouriño, V., & Boccaccini, A. R. (2009). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 7(43), 209-227.

https://doi.org/10.1098/rsif.2009.0379

Oliphant, C. M., & Green, G. (2002). Quinolones: a comprehensive review. American family physician, 65(3), 455.

Punyani, S., Deb, S., & Singh, H. (2007). Contact killing antimicrobial acrylic bone cements: preparation and characterization. Journal of Biomaterials Science, Polymer Edition, 18(2), 131-145.

https://doi.org/10.1163/156856207779116748

Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2(4), 176-194.

https://doi.org/10.4161/biom.22905

Romano, C. L., Tsuchiya, H., Morelli, I., Battaglia, A. G., & Drago, L. (2019). Antibacterial coating of implants: are we missing something? Bone & Joint Research, 8(5), 199-206.

https://doi.org/10.1302/2046-3758.85.BJR-2018-0316

Ross, D. L., & Riley, C. M. (1990). Aqueous solubilities of some variously substituted quinolone antimicrobials. International journal of pharmaceutics, 63(3), 237-250.

Salem, I. I., Flasher, D. L., & Düzgüneş, N. (2005). Liposome-encapsulated antibiotics. In Methods in enzymology (Vol. 391, pp. 261-291).

https://doi.org/10.1016/S0076-6879(05)91015-X

Seebach, E., & Kubatzky, K. F. (2019). Chronic implant-related bone infections - can immune modulation be a therapeutic strategy? Frontiers in immunology, 10, 1724.

https://doi.org/10.3389/fimmu.2019.01724

Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable materials for bone repair and tissue engineering applications. Materials, 8(9), 5744-5794.

https://doi.org/10.3390/ma8095273

Shin, K., Acri, T., Geary, S., & Salem, A. K. (2017). Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Engineering Part A, 23(19-20), 1169-1180.

https://doi.org/10.1089/ten.TEA.2016.0556

Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The lancet, 358(9276), 135-138.

https://doi.org/10.1016/s0140-6736(01)05321-1

Su, W. Y., Santhanam, J., Ng, S. F., & Bharatham, B. H. (2021). Vancomycin Loaded Alginate/Cockle Shell Powder Nanobiocomposite Bone Scaffold for Antibacterial and Drug Release Evaluation. Sains Malaysiana, 50(8), 2309-2318.

http://doi.org/10.17576/jsm-2021-5008-14

Sun, D., Chen, Y., Tran, R.T., Xu, S., Xie, D., Jia, C., Wang, Y., Guo, Y., Zhang, Z., Guo, J., Yang, J., Jin, D., Bai, X. (2014). Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration. Sci Rep. 2014 Nov 5;4:6912.

https://doi.org/10.1038/srep06912

Tsai, S.-W., Hsu, F.-Y., & Chen, P.-L. (2008). Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta biomaterialia, 4(5), 1332-1341.

https://doi.org/10.1016/j.actbio.2008.03.015

Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials, 3(3), 278-314.

https://doi.org/10.1016/j.bioactmat.2017.10.001

Wallace, S. J., Li, J., Nation, R. L., & Boyd, B. J. (2012). Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug delivery and translational research, 2, 284-292.

https://doi.org/10.1007/s13346-012-0064-4

Wu, X., Walsh, K., Hoff, B. L., & Camci-Unal, G. (2020). Mineralization of biomaterials for bone tissue engineering. Bioengineering, 7(4), 132.

https://doi.org/10.3390/bioengineering7040132

Zhang, J., Wang, C., Wang, J., Qu, Y., & Liu, G. (2012). In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite. Drug delivery, 19(5), 264-269.

https://doi.org/10.3109/10717544.2012.704093

Zilberman, M., & Elsner, J. J. (2008). Antibiotic-eluting medical devices for various applications. Journal of Controlled Release, 130(3), 202-215.

https://doi.org/10.1016/j.jconrel.2008.05.020

Zimmerli, W., & Sendi, P. (2017). Orthopaedic biofilm infections. Apmis, 125(4), 353-364.

https://doi.org/10.1111/apm.12687

Zou, F., Jiang, J., Lv, F., Xia, X., & Ma, X. (2020). Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu (I)@ ZIF-8 nanocomposite scaffolds for infected bone repair. Journal of Nanobiotechnology, 18(1), 1-14.

https://doi.org/10.1186/s12951-020-00594-6

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Huai Li Wong, Jacinta Santhanam, Shiow Fern Ng, B Hemabarathy Bharatham