Abstract
Orthopedic implant infection is one of the most challenging issues in bone tissue engineering industry. Hence, local delivery of antibiotics incorporated into a fabricated bone scaffold possibly provides a more rapid bacteria inhibitory effect. In this study, pure ciprofloxacin loaded alginate/cockle shell powder nanobiocomposite bone scaffolds are fabricated with 5 wt% and 10 wt% ciprofloxacin respectively and tested for drug encapsulation, drug release and antibacterial properties towards common implant infecting bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa). Results from the studies showed a low drug encapsulation and drug release regardless of the concentration of drugs loaded with no significant differences noted (p<0.05). However, bacterial inhibition studies through direct contact and using eluted samples from drug release studies showed some inhibitory effects towards the growth of both bacterial strains tested. These findings were further justified with microscopy observations on biofilm and bacterial colony formation. Mineralization studies conducted additionally indicated that the scaffolds characteristics was not compromised due to drug loading. Although pure ciprofloxacin may not be the most suitable antibiotic to be incorporated into the nanobiocomposite bone scaffold, the study did provide some insight to the possible use of the scaffold for future drug delivery applications.
References
Bharatham, B. H., Bakar, A., Zuki, M., Perimal, E. K., Yusof, L. M., & Hamid, M. (2014). Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold. BioMed Research International,
https://doi.org/10.1155/2014/146723
Breda, S. A., Jimenez-Kairuz, A. F., Manzo, R. H., & Olivera, M. a. E. (2009). Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. International journal of pharmaceutics, 371(1-2), 106-113.
https://doi.org/10.1016/j.ijpharm.2008.12.026
Calori, G. M., Mazza, E., Colombo, M., & Ripamonti, C. (2011). The use of bone-graft substitutes in large bone defects: any specific needs? Injury, 42, S56-S63.
https://doi.org/10.1016/j.injury.2011.06.011
Cao, Z., Jiang, D., Yan, L., & Wu, J. (2017). In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold. International Journal of Nanomedicine, 12, 1841-1851.
https://doi.org/10.2147/IJN.S122864
Corvec, S. p., Portillo, M. E., Pasticci, B. M., Borens, O., & Trampuz, A. (2012). Epidemiology and new developments in the diagnosis of prosthetic joint infection. The International journal of artificial organs, 35(10), 923-934.
https://doi.org/10.5301/ijao.5000168
Hariyadi, D. M., & Hendradi, E. (2020). Optimization performance and physical stability of ciprofloxacin HCLCA alginate microspheres: Effect of different concentration of alginate and CACL2. International Journal of Drug Delivery Technology, 10(1), 89-94.
Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543.
https://doi.org/10.1016/s0142-9612(00)00121-6
Isa, T., Zakaria, Z. A. B., Rukayadi, Y., Mohd Hezmee, M. N., Jaji, A. Z., Imam, M. U., Hammadi, N. I., & Mahmood, S. K. (2016). Antibacterial activity of ciprofloxacin-encapsulated cockle shells calcium carbonate (Aragonite) nanoparticles and its biocompatability in macrophage J774A. 1. International journal of molecular sciences, 17(5), 713.
https://doi.org/10.3390/ijms17050713
Islam, K. N., Zuki, A. B. Z., Ali, M. E., Hussein, M. Z. B., Noordin, M. M., Loqman, M. Y., Wahid, H., Hakim, M. A., & Hamid, S. B. A. (2012). Facile synthesis of calcium carbonate nanoparticles from cockle shells. Journal of Nanomaterials, 2012, 2-2.
https://doi.org/10.1155/2012/534010
Jovic, T. H., Combellack, E. J., Jessop, Z. M., & Whitaker, I. S. (2020). 3D Bioprinting and the Future of Surgery. Frontiers in surgery, 7, 609836.
https://doi.org/10.3389/fsurg.2020.609836
Kanczler, J. M., & Oreffo, R. O. (2008). Osteogenesis and angiogenesis: the potential for engineering bone. European Cells & Materials, 15, 100-114.
https://doi.org/10.22203/ecm.v015a08
Kretlow, J. D., & Mikos, A. G. (2007). Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue engineering, 13(5), 927-938.
https://doi.org/10.1089/ten.2006.0394
Krishnan, A. G., Jayaram, L., Biswas, R., & Nair, M. (2015). Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded Gelatin–Hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Engineering Part A, 21(7-8), 1422-1431.
https://doi.org/10.1089/ten.TEA.2014.0605
Lecaroz, C., Gamazo, C., & Blanco-Prieto, M. J. (2006). Nanocarriers with gentamicin to treat intracellular pathogens. Journal of nanoscience and nanotechnology, 6(9-10), 3296-3302.
https://doi.org/10.1166/jnn.2006.478
Lin, L., Shao, J., Ma, J., Zou, Q., Li, J., Zuo, Y., Yang, F., & Li, Y. (2019). Development of ciprofloxacin and nano-hydroxyapatite dual-loaded polyurethane scaffolds for simultaneous treatment of bone defects and osteomyelitis. Materials Letters, 253, 86-89.
https://doi.org/10.1016/j.matlet.2019.06.028
Moriarty, T. F., Kuehl, R., Coenye, T., Metsemakers, W.-J., Morgenstern, M., Schwarz, E. M., Riool, M., Zaat, S. A. J., Khana, N., & Kates, S. L. (2016). Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT open reviews, 1(4), 89.
https://doi.org/10.1302/2058-5241.1.000037
Mouriño, V., & Boccaccini, A. R. (2009). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 7(43), 209-227.
https://doi.org/10.1098/rsif.2009.0379
Oliphant, C. M., & Green, G. (2002). Quinolones: a comprehensive review. American family physician, 65(3), 455.
Punyani, S., Deb, S., & Singh, H. (2007). Contact killing antimicrobial acrylic bone cements: preparation and characterization. Journal of Biomaterials Science, Polymer Edition, 18(2), 131-145.
https://doi.org/10.1163/156856207779116748
Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2(4), 176-194.
https://doi.org/10.4161/biom.22905
Romano, C. L., Tsuchiya, H., Morelli, I., Battaglia, A. G., & Drago, L. (2019). Antibacterial coating of implants: are we missing something? Bone & Joint Research, 8(5), 199-206.
https://doi.org/10.1302/2046-3758.85.BJR-2018-0316
Ross, D. L., & Riley, C. M. (1990). Aqueous solubilities of some variously substituted quinolone antimicrobials. International journal of pharmaceutics, 63(3), 237-250.
Salem, I. I., Flasher, D. L., & Düzgüneş, N. (2005). Liposome-encapsulated antibiotics. In Methods in enzymology (Vol. 391, pp. 261-291).
https://doi.org/10.1016/S0076-6879(05)91015-X
Seebach, E., & Kubatzky, K. F. (2019). Chronic implant-related bone infections - can immune modulation be a therapeutic strategy? Frontiers in immunology, 10, 1724.
https://doi.org/10.3389/fimmu.2019.01724
Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable materials for bone repair and tissue engineering applications. Materials, 8(9), 5744-5794.
https://doi.org/10.3390/ma8095273
Shin, K., Acri, T., Geary, S., & Salem, A. K. (2017). Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Engineering Part A, 23(19-20), 1169-1180.
https://doi.org/10.1089/ten.TEA.2016.0556
Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The lancet, 358(9276), 135-138.
https://doi.org/10.1016/s0140-6736(01)05321-1
Su, W. Y., Santhanam, J., Ng, S. F., & Bharatham, B. H. (2021). Vancomycin Loaded Alginate/Cockle Shell Powder Nanobiocomposite Bone Scaffold for Antibacterial and Drug Release Evaluation. Sains Malaysiana, 50(8), 2309-2318.
http://doi.org/10.17576/jsm-2021-5008-14
Sun, D., Chen, Y., Tran, R.T., Xu, S., Xie, D., Jia, C., Wang, Y., Guo, Y., Zhang, Z., Guo, J., Yang, J., Jin, D., Bai, X. (2014). Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration. Sci Rep. 2014 Nov 5;4:6912.
https://doi.org/10.1038/srep06912
Tsai, S.-W., Hsu, F.-Y., & Chen, P.-L. (2008). Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta biomaterialia, 4(5), 1332-1341.
https://doi.org/10.1016/j.actbio.2008.03.015
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials, 3(3), 278-314.
https://doi.org/10.1016/j.bioactmat.2017.10.001
Wallace, S. J., Li, J., Nation, R. L., & Boyd, B. J. (2012). Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug delivery and translational research, 2, 284-292.
https://doi.org/10.1007/s13346-012-0064-4
Wu, X., Walsh, K., Hoff, B. L., & Camci-Unal, G. (2020). Mineralization of biomaterials for bone tissue engineering. Bioengineering, 7(4), 132.
https://doi.org/10.3390/bioengineering7040132
Zhang, J., Wang, C., Wang, J., Qu, Y., & Liu, G. (2012). In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite. Drug delivery, 19(5), 264-269.
https://doi.org/10.3109/10717544.2012.704093
Zilberman, M., & Elsner, J. J. (2008). Antibiotic-eluting medical devices for various applications. Journal of Controlled Release, 130(3), 202-215.
https://doi.org/10.1016/j.jconrel.2008.05.020
Zimmerli, W., & Sendi, P. (2017). Orthopaedic biofilm infections. Apmis, 125(4), 353-364.
https://doi.org/10.1111/apm.12687
Zou, F., Jiang, J., Lv, F., Xia, X., & Ma, X. (2020). Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu (I)@ ZIF-8 nanocomposite scaffolds for infected bone repair. Journal of Nanobiotechnology, 18(1), 1-14.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Huai Li Wong, Jacinta Santhanam, Shiow Fern Ng, B Hemabarathy Bharatham
