Conditioned medium of IGF-1-induced human synovial membrane mesenchymal stem cells effects on inflammatory response of osteoarthritic in vitro model
PDF

Keywords

Conditioned medium
IGF-1
osteoarthritis
pro-inflammatory marker
SM-MSCs

How to Cite

Conditioned medium of IGF-1-induced human synovial membrane mesenchymal stem cells effects on inflammatory response of osteoarthritic in vitro model. (2023). Life Sciences, Medicine and Biomedicine, 7(1). https://doi.org/10.28916/lsmb.7.1.2023.121

Abstract

Synovial membrane mesenchymal stem cells (SM-MSCs) possess excellent regenerative potential, making them a viable option for osteoarthritis (OA) therapy. Moreover, these cells can be easily obtained from the human body.  Insulin-like growth factor (IGF-1) can be used to decrease the pro-inflammatory marker, these markers can trigger inflammation in OA. These challenges can be addressed by utilizing a conditioned medium (CM) derived from stem cell culture. This study aims to compare the effective way of OA therapy between CM SM-MSC and CM SM-MSC induced by IGF-1 by observe the pro-inflammatory markers such as NF-kB, RANTES, PGE2, COL1 and the anti-inflammatory marker, Aggrecan (ACAN). Chondrocyte cells induced IL-1β as OA model (IL1β-CHON002) treated with IGF-1 15% and 30% and without IGF1-induced SM-MSCs-CM to know its effectiveness in decreasing the pro-inflammatory markers. ELISA and RT-qPCR methods were performed to analyze this effect. Based on the data result, SM-MSCs-CM is estimated to have the potential to treat OA as seen from the content of growth factors in CM, decreasing the markers of inflammation. The most significant reduction in PGE2, RANTES, NF-kB, and COL1 concentration was found in the treatment of SM-MSCs-CM cultured with IGF1 concentrations of 150 ng/mL. The higher aggrecan (ACAN) concentration was found in IGF150 15%. Conclusion: CM from SM-MSCs cultured with IGF150 with concentrations of 15% and 30% resulted in the most effective concentration to decrease the concentration of pro-inflammatory markers and also to increase the anti-inflammatory markers.

PDF

References

Adachi, N., Miyamoto, A., Deie, M., Nakamae, A., & Nakasa, T. (2012). Synovium in the transitional zone between the articular cartilage and the synovial membrane contains stem cells and has greater chondrogenic differentiation potential than synovium in other locations. Rheumatology, 3(001), 2161-1149.

https://doi.org/10.4172/2161-1149.S3-001

Afifah, E., Mozef, T., Sandra, F., Arumwardana, S., Rihibiha, D. D., Nufus, H., Rizal, R., Amalia, A., Bachtiar, I., & Murti, H. (2019). Induction of matrix metalloproteinases in chondrocytes by interleukin IL-1β as an osteoarthritis model. Journal of Mathematical and Fundamental Science, 51(2), 103-111.

https://doi.org/10.5614/j.math.fund.sci.2019.51.2.1

Ahmed, S., Rahman, A., Hasnain, A., Lalonde, M., Goldberg, V. M., & Haqqi, T. M. (2002). Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radical Biology and Medicine, 33(8), 1097-1105.

https://doi.org/10.1016/S0891-5849(02)01004-3

Alaaeddine, N., Olee, T., Hashimoto, S., Creighton-Achermann, L., & Lotz, M. (2001). Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 44(7), 1633-1643.

Alaaeddine, N., Olee, T., Hashimoto, S., Creighton-Achermann, L., & Lotz, M. (2001). Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 44(7), 1633-1643.

Bhang, S. H., Lee, S., Shin, J.-Y., Lee, T.-J., Jang, H.-K., & Kim, B.-S. (2014). Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Molecular Therapy, 22(4), 862-872.

https://doi.org/10.1038/mt.2013.301

de Sousa, E. B., Casado, P. L., Neto, V. M., Duarte, M. E. L., & Aguiar, D. P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, 5, 1-6.

https://doi.org/10.1186/scrt501

Flugge, L. A., Miller-Deist, L. A., & Petillo, P. A. (1999). Towards a molecular understanding of arthritis. Chemistry & Biology, 6(6), R157-R166.

https://doi.org/10.1016/S1074-5521(99)80043-X

Keen, R. R., Nolan, K. D., Cipollone, M., Scott, E., Shively, V. P., Yao, J. S. T., & Pearce, W. H. (1994). Interleukin-1β induces differential gene expression in aortic smooth muscle cells. Journal of Vascular Surgery, 20(5), 774-786.

https://doi.org/10.1016/S0741-5214(94)70165-2

Koga, H., Shimaya, M., Muneta, T., Nimura, A., Morito, T., Hayashi, M., Suzuki, S., Ju, Y.-J., Mochizuki, T., & Sekiya, I. (2008). Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Research & Therapy, 10(4), 1-10.

https://doi.org/10.1186/ar2460

Ma, B., Leijten, J. C. H., Wu, L., Kip, M., Van Blitterswijk, C. A., Post, J. N., & Karperien, M. (2013). Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthritis and Cartilage, 21(4), 599-603.

https://doi.org/10.1016/j.joca.2013.01.014

Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M. D., Kohn, D., & Trippel, S. B. (2005). Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Therapy, 12(15), 1171-1179.

https://doi.org/10.1038/sj.gt.3302515

Maggio, M., De Vita, F., Lauretani, F., Butto, V., Bondi, G., Cattabiani, C., Nouvenne, A., Meschi, T., Dall'Aglio, E., & Ceda, G. P. (2013). IGF-1, the cross road of the nutritional, inflammatory and hormonal pathways to frailty. Nutrients, 5(10), 4184-4205.

https://doi.org/10.3390/nu5104184

McQuillan, D. J., Handley, C. J., Campbell, M. A., Bolis, S., Milway, V. E., & Herington, A. C. (1986). Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochemical Journal, 240(2), 423-430.

https://doi.org/10.1042/bj2400423

Miagkov, A. V., Kovalenko, D. V., Brown, C. E., Didsbury, J. R., Cogswell, J. P., Stimpson, S. A., Baldwin, A. S., & Makarov, S. S. (1998). NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proceedings of the National Academy of Sciences, 95(23), 13859-13864.

https://doi.org/10.1073/pnas.95.23.13859

Orbay, H., Tobita, M., & Mizuno, H. (2012). Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells International, 2012.

https://doi.org/10.1155/2012/461718

Pawitan, J. A. (2014). Prospect of stem cell conditioned medium in regenerative medicine. BioMed Research International, 2014.

https://doi.org/10.1155/2014/965849

Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 52(8), 2521-2529.

https://doi.org/10.1002/art.21212

Schoenle, E., Zapf, J. r., Humbel, R. E., & Froesch, E. R. (1982). Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature, 296(5854), 252-253.

https://doi.org/10.1038/296252a0

Singh, R., Ahmed, S., Islam, N., Goldberg, V. M., & Haqqi, T. M. (2002). Epigallocatechin-3-gallate inhibits interleukin-1β-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis & Rheumatism, 46(8), 2079-2086.

https://doi.org/10.1002/art.10443

Valdes, A. M., & Stocks, J. (2018). Osteoarthritis and ageing. European Medical Journal Rheumatology, 3(1).

https://doi.org/10.33590/emj/10313855

Van Buul, G. M., Villafuertes, E., Bos, P. K., Waarsing, J. H., Kops, N., Narcisi, R., Weinans, H., Verhaar, J. A. N., Bernsen, M. R., & Van Osch, G. (2012). Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthritis and Cartilage, 20(10), 1186-1196.

https://doi.org/10.1016/j.joca.2012.06.003

Wei, F. Y., Lee, J. K., Wei, L., Qu, F., & Zhang, J. Z. (2017). Correlation of insulin-like growth factor 1 and osteoarthritic cartilage degradation: a spontaneous osteoarthritis in guinea-pig. European Review for Medical and Pharmacological Sciences, 21(20), 4493.

Widowati, W., Afifah, E., Mozef, T., Sandra, F., Rizal, R., Amalia, A., Arinta, Y., Bachtiar, I., & Murti, H. (2018). Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model. Iranian Journal of Basic Medical Sciences, 21(7), 745.

Widowati, W., Wijaya, L., Bachtiar, I., Gunanegara, R. F., Sugeng, S. U., Irawan, Y. A., Sumitro, S. B., & Widodo, M. A. (2014). Effect of oxygen tension on proliferation and characteristics of Wharton's jelly-derived mesenchymal stem cells. Biomarkers and Genomic Medicine, 6(1), 43-48.

https://doi.org/10.1016/j.bgm.2014.02.001

Widowati, W., Wijaya, L., Murti, H., Widyastuti, H., Agustina, D., Laksmitawati, D. R., Fauziah, N., Sumitro, S. B., Widodo, M. A., & Bachtiar, I. (2015). Conditioned medium from normoxia (WJMSCs-norCM) and hypoxia-treated WJMSCs (WJMSCs-hypoCM) in inhibiting cancer cell proliferation. Biomarkers and Genomic Medicine, 7(1), 8-17.

https://doi.org/10.1016/j.bgm.2014.08.008

Wojdasiewicz, P., Poniatowski, L. A., & Szukiewicz, D. (2014). The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators of inflammation, 2014.

https://doi.org/10.1155/2014/561459

Ying, X., Chen, X., Cheng, S., Shen, Y., Peng, L., & zi Xu, H. (2013). Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. International Immunopharmacology, 17(2), 293-299.

https://doi.org/10.1016/j.intimp.2013.06.025

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Marlina Marlina, Armenia Armenia, Rizki Rahmadian, Wahyu Setia Widodo, Syarifah Fadhlira Haddeline, Maharani Safitri, Nur Elida, Wahyu Widowati