High-yield biogenic fabrication and phytochemical screening of silver nanomaterials (AgNMs) from Kaempferia parviflora rhizome extract
PDF

Keywords

Kaempferia parviflora
biogenic fabrication
silver nanomaterials
optimization
high yield

How to Cite

Azman, A. K., Aidiel, M., Van Oosterhout, D. A. ., & Abdul Mutalib, M. . (2024). High-yield biogenic fabrication and phytochemical screening of silver nanomaterials (AgNMs) from Kaempferia parviflora rhizome extract. Life Sciences, Medicine and Biomedicine, 8(1). https://doi.org/10.28916/lsmb.8.1.2024.148

Abstract

Nanotechnology is one of the promising scientific advancements that has captured widespread interest across various industries, notably in medicine. The utilization of plants for the synthesis of silver nanomaterials (AgNMs) has emerged as a promising and eco-friendly approach, offering cost-effective solutions for potential biomedical applications. The study aims to optimize the efficiency of biogenic AgNMs fabrication by employing Kaempferia parviflora aqueous extraction (KP-AE) as both a reducing and encapsulating agent, thus optimizing the yield of AgNMs. Phytochemical screening was conducted to identify the phytochemical compounds present in KP-AE. Various parameters were optimized, including pH, temperature, and the ratio of KP extract to AgNO3, over different incubation periods. The synthesized AgNMs were analyzed spectroscopically and microscopically using UV-Vis and SEM techniques. At varying concentrations of KP and AgNO3, the KP-AE AgNMs were successfully biogenic fabricated, but the yields varied. As the concentrations of AgNO3 increased, a greater yield of KP-AE AgNMs was achieved. Phytochemical screening KP-AE demonstrated the presence of potential phytochemicals such as alkaloids, saponins, tannins, flavonoids, terpenoids, glycosides, and oils that assisted in the biogenic fabrication of AgNMs. This study established an efficient, affordable, and ecologically sustainable approach for fabricating stable AgNMs using KP-AE AgNMs. Synergistically, reducing and capping potential has been achieved by combining the plant extract in plant-mediated biogenic fabrication, producing stabilized NMs compared to those produced individually. The AgNMs derived from KP-AE exhibit robust antioxidant properties, showcasing promise for further exploration in pharmaceutical applications. Additional research is needed to investigate the biological potential and pharmacological properties of the biogenic fabricated KP-AE AgNMs.

https://doi.org/10.28916/lsmb.8.1.2024.148
PDF

References

Aramwit, P., Bang, N., Ratanavaraporn, J., & Ekgasit, S. (2014). Green synthesis of silk sericin-capped silver nanomaterials and their potent anti-bacterial activity. Nanoscale Research Letters, 9(1).

https://doi.org/10.1186/1556-276x-9-79

Akullo, J. O., Kiage‐Mokua, B. N., Nakimbugwe, D., Ng’ang’a, J., & Kinyuru, J. (2023). Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon, 9(8), e18806.

https://doi.org/10.1016/j.heliyon.2023.e18806

Álvarez-Chimal, R., & Arenas-Alatorre, J. (2023). Green synthesis of nanoparticles. A biological approach. In IntechOpen eBooks.

https://doi.org/10.5772/intechopen.1002203

Alzahrani, E., & Welham, K. J. (2014). Optimization preparation of the biosynthesis of silver nanoparticles using watermelon and study of itsantibacterial activity. International Journal of Basic and Applied Sciences, 3(4), 392.

https://doi.org/10.14419/ijbas.v3i4.3358

Asamenew, G., Kim, H., Lee, M., Lee, S., Kim, Y. J., Cha, Y., Yoo, S. M., & Kim, J. (2018). Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology, 245(3), 653–665.

https://doi.org/10.1007/s00217-018-3188-z

Balakumaran, M. D., Ramachandran, R., & Kalaichelvan, P. T. (2015). Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanomaterials and their in vitro biological activities. Microbiological Research, 178, 9–17.

https://doi.org/10.1016/j.micres.2015.05.009

Bhatt, D., Gupta, E., Kaushik, S., Srivastava, V. K., Saxena, J., & Jyoti, A. (2018). Bio‐fabrication of silver nanomaterials by Pseudomonas aeruginosa : optimisation and antibacterial activity against selected waterborne human pathogens. Iet Nanobiotechnology, 12(7), 981–986.

https://doi.org/10.1049/iet-nbt.2018.0051

Chaisuwan, V., Dajanta, K., & Srikaeo, K. (2022). Effects of extraction methods on antioxidants and methoxyflavones of Kaempferia parviflora . Food Research, 6(3), 374–381.

https://doi.org/10.26656/fr.2017.6(3).408

Chen, D., Li, H., Li, W., Feng, S., & Deng, D. (2018). Kaempferia parvifloraand Its Methoxyflavones: Chemistry and Biological Activities. Evidence-based Complementary and Alternative Medicine, 1–15.

https://doi.org/10.1155/2018/4057456

Chouhan, S., & Guleria, S. (2020). Green synthesis of AgNMs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Materials Science for Energy Technologies, 3, 536–544.

https://doi.org/10.1016/j.mset.2020.05.004

Ealia, S. a. M., & Saravanakumar, M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series, 263, 032019.

https://doi.org/10.1088/1757-899x/263/3/032019

Horigome, S., Yoshida, I., Tsuda, A., Harada, T., Yamaguchi, A., Yamazaki, K., Inohana, S., Isagawa, S., Kibune, N., Satoyama, T., Katsuda, S. I., Suzuki, S., Watai, M., Hirose, N., Mitsue, T., Shirakawa, H., & Komai, M. (2014). Identification and evaluation of anti-inflammatory compounds fromKaempferia parviflora . Bioscience, Biotechnology, and Biochemistry, 78(5), 851–860.

https://doi.org/10.1080/09168451.2014.905177

Hossain, M. A., Wongsrikaew, N., Yoo, G., Han, J., & Shin, C. (2012). Cytotoxic effects of polymethoxyflavones isolated from Kaempferia parviflora. Journal of the Korean Society for Applied Biological Chemistry, 55(4), 471–476.

https://doi.org/10.1007/s13765-012-2026-4

Jain, S. C., & Mehata, M. S. (2017). Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanomaterials and their Enhanced Antibacterial Property. Scientific Reports, 7(1).

https://doi.org/10.1038/s41598-017-15724-8

Jiang, X., Chen, W. M., Chen, C., Xiong, S. D., & Yu, A. (2010). Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Research Letters, 6(1).

https://doi.org/10.1007/s11671-010-9780-1

Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary Analysis of Phytoconstituents and Evaluation of Anthelminthic Property of Cayratia auriculata (In Vitro). PubMed, 14(4), 350–356.

https://doi.org/10.26574/maedica.2019.14.4.350

Khalir, W. K. a. W. M., Shameli, K., Jazayeri, S. M., Othman, N. H., Jusoh, N. W. C., & Hassan, N. M. (2020). Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of Entada spiralis and Screening of Their Biomedical Activity. Frontiers in Chemistry, 8.

https://doi.org/10.3389/fchem.2020.00620

Kim, C., & Hwang, J. K. (2020). The 5,7-Dimethoxyflavone suppresses sarcopenia by regulating protein turnover and mitochondria Biogenesis-Related pathways. Nutrients, 12(4), 1079.

https://doi.org/10.3390/nu12041079

Krongrawa, W., Limmatvapirat, S., Vollrath, M. K., Kittakoop, P., Saibua, S., & Limmatvapirat, C. (2022). Fabrication, Optimization, and Characterization of Antibacterial Electrospun Shellac Fibers Loaded with Kaempferia parviflora Extract. Pharmaceutics, 15(1), 123.

https://doi.org/10.3390/pharmaceutics15010123

Kwon, G., Kim, M., & Han, Y. S. (2021). Quality Characteristics and Antioxidant Activity of Yanggaeng Added with Black Ginger (Kaempferia parviflora ). Journal of the Korean Society of Food Science and Nutrition, 50(7), 715–724.

https://doi.org/10.3746/jkfn.2021.50.7.715

Le, H. L., Nguyen, V. H., Nguyen, T. D., Van Anh Nguyen, T., & Le, D. H. (2023). Potential antiaggregatory and anticoagulant activity of Kaempferia parviflora extract and its methoxyflavones. Industrial Crops and Products, 192, 116030.

https://doi.org/10.1016/j.indcrop.2022.116030

Liaqat, N., Jahan, N., Khalil-Ur-Rahman, Anwar, T., & Qureshi, H. (2022). Green synthesized silver nanomaterials: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in Chemistry, 10.

https://doi.org/10.3389/fchem.2022.952006

Melkamu, W. W., & Bitew, L. T. (2021). Green synthesis of silver nanomaterials using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon, 7(11), e08459.

https://doi.org/10.1016/j.heliyon.2021.e08459

Muhamad, M., Rahim, N. A., Omar, W. a. W., & Kamal, N. N. S. N. M. (2022). Cytotoxicity and genotoxicity of biogenic silver nanoparticles in A549 and BEAS-2B cell lines. Bioinorganic Chemistry and Applications, 1–22.

https://doi.org/10.1155/2022/8546079

Numan, A., Ahmed, M., Galil, M. S. A., Al-Qubati, M., Raweh, A. A., & Helmi, E. A. (2022). Bio-Fabrication of Silver Nanomaterials Using <i>Catha edulis</i> Extract: Procedure Optimization and Antimicrobial Efficacy Encountering Antibiotic-Resistant Pathogens. Advances in Nanomaterials, 11(02), 31–54.

https://doi.org/10.4236/anp.2022.112004

Khadeeja Parveen, Viktoria Banse, Lalita Ledwani; Green synthesis of nanoparticles: Their advantages and disadvantages. AIP Conf. Proc. 13 April 2016; 1724 (1): 020048.

https://doi.org/10.1063/1.4945168

Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., & Wang, L. (2013). Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess and Biosystems Engineering, 36(11), 1613–1619.

https://doi.org/10.1007/s00449-013-0937-z

Revathy, R., Joseph, J., Augustine, C., Sajini, T., & Mathew, B. (2022). Synthesis and catalytic applications of silver nanomaterials: a sustainable chemical approach using indigenous reducing and capping agents from Hyptis capitata. Environmental Science, 1(4), 491–505.

https://doi.org/10.1039/d2va00044j

Rose, G. K., Soni, R., Rishi, P., & Soni, S. K. (2019). Optimization of the biological synthesis of silver nanomaterials using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Processing and Synthesis, 8(1), 144–156.

https://doi.org/10.1515/gps-2018-0042

Saxena, J., Sharma, P. K., Sharma, M. M., & Singh, A. (2016). Process optimization for green synthesis of silver nanomaterials by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus, 5(1).

https://doi.org/10.1186/s40064-016-2558-x

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531.

https://doi.org/10.1016/j.foodchem.2022.132531

Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A., & Mathew, J. (2014). Optimization and Characterization of Silver Nanoparticle by Endophytic FungiPenicilliumsp. Isolated fromCurcuma longa(Turmeric) and Application Studies against MDRE. coliandS. aureus. Bioinorganic Chemistry and Applications, 2014, 1–8.

https://doi.org/10.1155/2014/408021

Singh, J., Dutta, T., Kim, K., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanomaterials: applications for environmental remediation. Journal of Nanobiotechnology, 16(1).

https://doi.org/10.1186/s12951-018-0408-4

Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., Sahoo, A. K., & Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25, e00427.

https://doi.org/10.1016/j.btre.2020.e00427

Singh, A., Singh, N., Singh, S., Srivastava, R. P., Singh, L., Verma, P. C., Devkota, H. P., Rahman, L. U., Rajak, B. K., Singh, A., & Saxena, G. (2023). The industrially important genus Kaempferia: An ethnopharmacological review. Frontiers in Pharmacology, 14.

https://doi.org/10.3389/fphar.2023.1099523

Sitthichai, P., Chanpirom, S., Maneerat, T., Charoensup, R., Tree‐Udom, T., Pintathong, P., Laphookhieo, S., & Sripisut, T. (2022). Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient. Molecules, 27(14), 4401.

https://doi.org/10.3390/molecules27144401

Synthesis of silver nanoparticles: chemical, physical and biological methods. (2014, December 1). PubMed.

https://pubmed.ncbi.nlm.nih.gov/26339255/

Tarmizi, A. a. A., Adam, S. H., Ramli, N. N. N., Hadi, N. H. A., Mutalib, M. A., Tang, S. G. H., & Mokhtar, M. H. (2023). The ameliorative Effects of selenium nanomaterials (SENPs) on Diabetic rat model: A Narrative review. Sains Malaysiana, 52(7), 2037–2053.

https://doi.org/10.17576/jsm-2023-5207-12

Thakor, H. J., Rathi, Y. S., & Nayak, N. S. (2023). Phytochemical Screening of Ginger (Zingiber officinale), a Medicinal Plant. Scholars International Journal of Traditional and Complementary Medicine, 6(04), 58–62.

https://doi.org/10.36348/sijtcm.2023.v06i04.002

Takuathung, M. N., Potikanond, S., Sookkhee, S., Mungkornasawakul, P., Jearanaikulvanich, T., Chinda, K., Wikan, N., & Nimlamool, W. (2021). Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomedicine & Pharmacotherapy, 143, 112229.

https://doi.org/10.1016/j.biopha.2021.112229

Tuntiyasawasdikul, S., & Sripanidkulchai, B. (2022). Development and clinical trials on anti-inflammatory effect of transdermal patch containing a combination of Kaempferia parviflora and Curcuma longa extracts. Journal of Drug Delivery Science and Technology, 68, 103093.

https://doi.org/10.1016/j.jddst.2022.103093

Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Advances, 11(5), 2804–2837.

https://doi.org/10.1039/d0ra09941d

Varghese, B. A., Nair, R. V. R., Jude, S., Varma, K., Amalraj, A., & Kuttappan, S. (2021). Green synthesis of gold nanomaterials using Kaempferia parviflora rhizome extract and their characterization and application as an antimicrobial, antioxidant and catalytic degradation agent. Journal of the Taiwan Institute of Chemical Engineers, 126, 166–172.

https://doi.org/10.1016/j.jtice.2021.07.016

Wang, Z., Li, W., Yang, J., Zengyan, Y., Yang, C., & Jin, H. (2020). Research Progress of Herbal Medicines on Drug Metabolizing Enzymes: Consideration based on Toxicology. Current Drug Metabolism, 21(12), 913–927.

https://doi.org/10.2174/1389200221999200819144204

Yenjai, C., Prasanphen, K., Daodee, S., Wongpanich, V., & Kittakoop, P. (2004). Bioactive flavonoids from Kaempferia parviflora. Fitoterapia, 75(1), 89–92.

https://doi.org/10.1016/j.fitote.2003.08.017

Yusuf, S. Y., Mood, C. N. a. C., Ahmad, N. H., Sandai, D., Lee, C. K., & Lim, V. (2020). Optimization of biogenic synthesis of silver nanomaterials from flavonoid-rich Clinacanthus nutans leaf and stem aqueous extracts. Royal Society Open Science, 7(7), 200065.

https://doi.org/10.1098/rsos.200065

Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.

https://doi.org/10.3390/ijms17091534

Zuhrotun, A., Oktaviani, D. J., & Hasanah, A. N. (2023). Biosynthesis of gold and silver nanomaterials using phytochemical compounds. Molecules, 28(7), 3240.

https://doi.org/10.3390/molecules28073240

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Array