Exploring the effects of oxidative stress caused by opioid drugs: A systematic review
PDF

Keywords

Oxidative stress
oxidant
free radicals
opioid addiction
animal studies

How to Cite

Exploring the effects of oxidative stress caused by opioid drugs: A systematic review. (2025). Life Sciences, Medicine and Biomedicine, 9(1). https://doi.org/10.28916/lsmb.9.1.2025.159

Abstract

Drug abuse poses serious challenges in various countries worldwide. It causes the amount of oxidative stress to elevate and lead to the abnormality of physiological changes in the body. Concerning the varied of effects in this situation, this systematic review aimed to scrutinize the relation between drug addiction and the oxidative stress in animal models. A systematic literature search using PubMed via National Library of Medicine (NIH) with the keywords as follow: “Oxidative stress” or “oxidant” or “free radical” and “opioid” or “opioid drug addiction” or “animal opioid addiction”. A total of seven relevant articles underwent further analysis for data extraction.  Tramadol was shown has an effect on testicular tissue abnormalities due to the presence of oxidative stress that change the gene expression, besides, it can lead to altered neurotransmitter in cerebral cortex. Morphine appear has different reaction of withdrawal symptoms in male and female. It also has greater elevation of symptoms when induced with naloxone. The combination of morphine and remifentanil reveal the changes in myocardium due to the oxidative stress changes, however, in combination with anakinra it happened to reduce the morphine tolerance which has the antinociceptive properties. Evidence indicate that chronic codeine administration can cause changes in liver function and DNA damage. Current research confirms that oxidative stress and drug addiction have an association leading to the disturbance of the body's normal physiology.

PDF

References

Aidiel, M., Maisarah, A.M., Khalid, K., Nik Ramli, N. N., Tang, S.G.H., & Adam, S.H. (2023). Polymethoxyflavones transcends expectation, a prominent flavonoid subclass from Kaempferia parviflora: A critical review. Arabian Journal of Chemistry, 17(1), 105364.

https://doi.org/10.1016/j.arabjc.2023.105364

Akhigbe, R. E., Ajayi, L. O., Adelakun, A. A., Olorunnisola, O. S., & Ajayi, A. F. (2020). Codeine-induced hepatic injury is via oxido-inflammatory damage and caspase-3-mediated apoptosis. Molecular Biology Reports, 47(12), 9521–9530.

https://doi.org/10.1007/s11033-020-05983-6

Avci, O., & Taşkiran, A. Ş. (2020). Anakinra, an interleukin-1 receptor antagonist, increases the morphine analgesic effect and decreases morphine tolerance development by modulating oxidative stress and endoplasmic reticulum stress in rats. Turkish Journal of Medical Sciences, 50(8), 2048–2058.

https://doi.org/10.3906/sag-2005-256

Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014.

https://doi.org/10.1155/2014/360438

Bakhtazad, A., Vousooghi, N., Garmabi, B., & Zarrindast, M. R. (2016). CART peptide and opioid addiction: Expression changes in male rat brain. Neuroscience, 325, 63–73.

https://doi.org/10.1016/j.neuroscience.2016.02.071

Bameri, B., Shaki, F., Ahangar, N., Ataee, R., Samadi, M., & Mohammadi, H. (2018). Evidence for the Involvement of the Dopaminergic System in Seizure and Oxidative Damage Induced by Tramadol. International Journal of Toxicology, 37(2), 164–170.

https://doi.org/10.1177/1091581817753607

Besseling, P. J., Pieters, T. T., Nguyen, I. T. N., de Bree, P. M., Willekes, N., Dijk, A. H., Bovee, D. M., Hoorn, E. J., Rookmaaker, M. B., Gerritsen, K. G., Verhaar, M. C., Gremmels, H., & Joles, J. A. (2021). A plasma creatinine- And urea-based equation to estimate glomerular filtration rate in rats. American Journal of Physiology - Renal Physiology, 320(3), F518–F524.

https://doi.org/10.1152/AJPRENAL.00656.2020

Bobzean, S. A., Kokane, S. S., Butler, B. D., & Perrotti, L. I. (2019). Sex differences in the expression of morphine withdrawal symptoms and associated activity in the tail of the ventral tegmental area. Neuroscience letters, 705, 124-130.

https://doi.org/10.1016/j.neulet.2019.04.057

Brillo, V., Chieregato, L., Leanza, L., Muccioli, S., & Costa, R. (2021). Mitochondrial dynamics, ros, and cell signaling: A blended overview. Life, 11(4).

https://doi.org/10.3390/life11040332

Cahyadi, A., Ugrasena, I. D. G., Andarsini, M. R., Larasati, M. C. S., Aryati, A., & Arumsari, D. K. (2022). Relationship between Bax and Bcl-2 Protein Expression and Outcome of Induction Phase Chemotherapy in Pediatric Acute Lymphoblastic Leukemia. Asian Pacific Journal of Cancer Prevention, 23(5), 1679–1685.

https://doi.org/10.31557/APJCP.2022.23.5.1679

Camkurt, M. A., Fındıklı, E., Bakacak, M., Tolun, F. İ., & Karaaslan, M. F. (2017). Evaluation of Malondialdehyde, Superoxide Dismutase and Catalase Activity in Fetal Cord Blood of Depressed Mothers. Clinical psychopharmacology and neuroscience: The official scientific journal of the Korean College of Neuropsychopharmacology, 15(1), 35–39.

https://doi.org/10.9758/cpn.2017.15.1.35

Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057–1073.

https://doi.org/10.2147/JIR.S275595

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218.

https://doi.org/10.18632/oncotarget.23208

Ding, M., Liu, C., Shi, R., Yu, M., Zeng, K., Kang, J., Fu, F., & Mi, M. (2020). Mitochondrial fusion promoter restores mitochondrial dynamics balance and ameliorates diabetic cardiomyopathy in an optic atrophy 1-dependent way. In Acta Physiologica, 229 (1).

https://doi.org/10.1111/apha.13428

Dinis-Oliveira, R. J. (2019). Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. Journal of Forensic and Legal Medicine, 61(December 2018), 128–140.

https://doi.org/10.1016/j.jflm.2018.12.005

Dossena, S., & Marino, A. (2021). Cellular oxidative stress. Antioxidants, 10(3), 1–6.

https://doi.org/10.3390/antiox10030399

Dumas, E. O., & Pollack, G. M. (2008). Opioid tolerance development: A pharmacokinetic/pharmacodynamic perspective. AAPS Journal, 10(4), 537–551.

https://doi.org/10.1208/s12248-008-9056-1

Edinoff, A. N., Kaplan, L. A., Khan, S., Petersen, M., Sauce, E., Causey, C. D., Cornett, E. M., Imani, F., Moghadam, O. M., Kaye, A. M., & Kaye, A. D. (2021). Full opioid agonists and tramadol: Pharmacological and clinical considerations. Anesthesiology and Pain Medicine, 11(4).

https://doi.org/10.5812/aapm.119156

Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials, 14(15).

https://doi.org/10.3390/ma14154135

Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689–709.

https://doi.org/10.1038/s41573-021-00233-1

Fuseini, A. G., Afizu, A., Yakubu, Y. H., & Nachinab, G. (2019). Facilitators to the continuous abuse of tramadol among the youth: A qualitative study in Northern Ghana. Nursing Open, 6(4), 1388–1398.

https://doi.org/10.1002/nop2.353

Gambini, J., & Stromsnes, K. (2022). Oxidative stress and inflammation: From mechanisms to therapeutic approaches. Biomedicines, 10(4).

https://doi.org/10.3390/biomedicines10040753

Gong, L., Stamer, U. M., Tzvetkov, M. V., Altman, R. B., & Klein, T. E. (2014). PharmGKB summary: Tramadol pathway. Pharmacogenetics and Genomics, 24(7), 374–380.

https://doi.org/10.1097/FPC.0000000000000057

Gusti, A. M. T., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. (2021). Antioxidants-related superoxide dismutase (Sod), catalase (cat), glutathione peroxidase (gpx), glutathione-s-transferase (gst), and nitric oxide synthase (nos) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants, 10(4).

https://doi.org/10.3390/antiox10040595

Harayama, T., & Shimizu, T. (2020). Roles of polyunsaturated fatty acids, from mediators to membranes. Journal of Lipid Research, 61(8), 1150–1160.

https://doi.org/10.1194/JLR.R120000800

Heilig, M., MacKillop, J., Martinez, D., Rehm, J., Leggio, L., & Vanderschuren, L. J. M. J. (2021). Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology, 46(10), 1715–1723.

https://doi.org/10.1038/s41386-020-00950-y

Hristov, B. D. (2022). The role of glutathione metabolism in chronic illness development and its potential use as a novel therapeutic target. Cureus, 14(9).

https://doi.org/10.7759/cureus.29696

Ibrahim, M. A. L., & Salah-Eldin, A. E. (2019). Chronic addiction to tramadol and withdrawal effect on the spermatogenesis and testicular tissues in adult male albino rats. Pharmacology, 103(3–4), 202–211.

https://doi.org/10.1159/000496424

Inceoglu, B., Bettaieb, A., Trindade Da Silva, C. A., Lee, K. S. S., Haj, F. G., & Hammock, B. D. (2015). Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 9082–9087.

https://doi.org/10.1073/pnas.1510137112

Islam, M. N., Rauf, A., Fahad, F. I., Emran, T. Bin, Mitra, S., Olatunde, A., Shariati, M. A., Rebezov, M., Rengasamy, K. R. R., & Mubarak, M. S. (2022). Superoxide dismutase: an updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition, 62(26), 7282–7300.

https://doi.org/10.1080/10408398.2021.1913400

Kalas, M. A., Chavez, L., Leon, M., Taweesedt, P. T., & Surani, S. (2021). Abnormal liver enzymes: A review for clinicians. World Journal of Hepatology, 13(11), 1688–1698.

https://doi.org/10.4254/wjh.v13.i11.1688

Kohli, S. K., Khanna, K., Bhardwaj, R., Abd Allah, E. F., Ahmad, P., & Corpas, F. J. (2019). Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants, 8(12).

https://doi.org/10.3390/antiox8120641

Lang, F. (2007). Mechanisms and Significance of Cell Volume Regulation. Journal of the American College of Nutrition, 26(January 2015), 613S-623S.

https://doi.org/10.1080/07315724.2007.10719667

Le Gal, K., Schmidt, E. E., & Sayin, V. I. (2021). Cellular redox homeostasis. Antioxidants, 10(9), 1–7.

https://doi.org/10.3390/antiox10091377

Lennicke, C., & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell, 81(18), 3691–3707.

https://doi.org/10.1016/j.molcel.2021.08.018

Listos, J., Łupina, M., Talarek, S., Mazur, A., Orzelska-Górka, J., & Kotlińska, J. (2019). The mechanisms involved in morphine addiction: An overview. International Journal of Molecular Sciences, 20(17).

https://doi.org/10.3390/ijms20174302

Liu, D., Zhou, Y., Peng, Y., Su, P., Li, Z., Xu, Q., Tu, Y., Tian, X., Yang, H., Wu, Z., Mei, W., & Gao, F. (2018). Endoplasmic reticulum stress in spinal cord contributes to the development of morphine tolerance. Frontiers in Molecular Neuroscience, 11(March), 1–16.

https://doi.org/10.3389/fnmol.2018.00072

Mannucci, A., Argento, F. R., Fini, E., Coccia, M. E., Taddei, N., Becatti, M., & Fiorillo, C. (2022). The Impact of Oxidative Stress in Male Infertility. Frontiers in Molecular Biosciences, 8(January), 1–9.

https://doi.org/10.3389/fmolb.2021.799294

Manzoor, M. F., Arif, Z., Kabir, A., Mehmood, I., Munir, D., Razzaq, A., Ali, A., Goksen, G., Coşier, V., Ahmad, N., Ali, M., & Rusu, A. (2022). Oxidative stress and metabolic diseases: Relevance and therapeutic strategies. Frontiers in Nutrition, 9(3).

https://doi.org/10.3389/fnut.2022.994309

Martins, S. G., Zilhão, R., Thorsteinsdóttir, S., & Carlos, A. R. (2021). Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Frontiers in Genetics, 12(July).

https://doi.org/10.3389/fgene.2021.673002

Mavrikaki, M., Lintz, T., Constantino, N., Page, S., & Chartoff, E. (2021). Chronic opioid exposure differentially modulates oxycodone self-administration in male and female rats. Addiction Biology, 26(3), 1–12.

https://doi.org/10.1111/adb.12973

Mei, B., Wang, T., Wang, Y., Xia, Z., Irwin, M. G., & Wong, G. T. C. (2013). High dose remifentanil increases myocardial oxidative stress and compromises remifentanil infarct-sparing effects in rats. European Journal of Pharmacology, 718(1–3), 484–492.

https://doi.org/10.1016/j.ejphar.2013.07.030

Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling, 20(7), 1126–1167.

https://doi.org/10.1089/ars.2012.5149

Mohamed, H. M., & Mahmoud, A. M. (2019). Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomedicine and Pharmacotherapy, 110(October 2018), 239–247.

https://doi.org/10.1016/j.biopha.2018.11.141

Murphy M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical journal, 417(1), 1–13.

https://doi.org/10.1042/BJ20081386

Mutalib, M. A., Shamsuddin, A. S., Ramli, N. N. N., Tang, S. G. H., & Adam, S. H. (2023). Antiproliferative activity and polyphenol analysis in tomato (Solanum lycopersicon). Malaysian Journal of Microscopy, 19(1), 282-294.

Nakhaee, S., Farrokhfall, K., Miri-Moghaddam, E., Foadoddini, M., Askari, M., & Mehrpour, O. (2021). The effects of quercetin on seizure, inflammation parameters and oxidative stress in acute on chronic tramadol intoxication. BMC Pharmacology and Toxicology, 22(1), 1–11.

https://doi.org/10.1186/s40360-021-00532-8

Okoye, C. N., Koren, S. A., & Wojtovich, A. P. (2023). Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biology, 67, 102926.

https://doi.org/10.1016/j.redox.2023.102926

Owoade, A. O., Adetutu, A., & Olorunnisola, O. S. (2019). Hematological and biochemical changes in blood, liver and kidney tissues under the effect of tramadol treatment. Journal of Alcoholism & Drug Dependence, 07(02).

https://doi.org/10.35248/2329-6488.19.7.326

Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1), 315–424.

http://www.ncbi.nlm.nih.gov/pubmed/17237348

Pantouli, F., Grim, T. W., Schmid, C. L., Acevedo-Canabal, A., Kennedy, N. M., Cameron, M. D., Bannister, T. D., & Bohn, L. M. (2021). Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. Neuropharmacology, 185(July 2020), 108439.

https://doi.org/10.1016/j.neuropharm.2020.108439

Pathan, H., & Williams, J. (2012). Basic opioid pharmacology: an update. British Journal of Pain, 6(1), 11–16.

https://doi.org/10.1177/2049463712438493

Petrovic, S., Arsic, A., Ristic-Medic, D., Cvetkovic, Z., & Vucic, V. (2020). Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: A review of human studies. Antioxidants, 9(11), 1–27.

https://doi.org/10.3390/antiox9111128

Picca, A., Calvani, R., Coelho-Júnior, H. J., Landi, F., Bernabei, R., & Marzetti, E. (2020). Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants, 9(8), 1–21.

https://doi.org/10.3390/antiox9080647

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017.

https://doi.org/10.1155/2017/8416763

Poetsch, A. R. (2020). The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Computational and Structural Biotechnology Journal, 18, 207–219.

https://doi.org/10.1016/j.csbj.2019.12.013

Quintana-Cabrera, R., Manjarrés-Raza, I., Vicente-Gutiérrez, C., Corrado, M., Bolaños, J. P., & Scorrano, L. (2021). Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria. Redox Biology, 41.

https://doi.org/10.1016/j.redox.2021.101944

Ranjith, H. V., Sagar, D., Kalia, V. K., Dahuja, A., & Subramanian, S. (2023). Differential activities of antioxidant enzymes, superoxide dismutase, peroxidase, and catalase vis-à-vis phosphine resistance in field populations of lesser grain borer (Rhyzopertha dominica) from India. Antioxidants, 12(2).

https://doi.org/10.3390/antiox12020270

Samarghandian, S., Afshari, R., & Farkhondeh, T. (2014). Effect of long-term treatment of morphine on enzymes, oxidative stress indices and antioxidant status in male rat liver. International Journal of Clinical and Experimental Medicine, 7(5), 1449–1453.

Shah, K., Stout, B., & Caskey, H. (2020). Tramadol for the management of opioid withdrawal: A systematic review of randomized clinical trials. Cureus, 12(7).

https://doi.org/10.7759/cureus.9128

Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. El, Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11(July), 1–21.

https://doi.org/10.3389/fphys.2020.00694

Sheweita, S. A., Almasmari, A. A., & El-Banna, S. G. (2018). Tramadol-induced hepato- and nephrotoxicity in rats: Role of curcumin and gallic acid as antioxidants. PLoS ONE, 13(8), 1–18.

https://doi.org/10.1371/journal.pone.0202110

Singh, H. (2021). Mitochondrial ion channels in cardiac function. American Journal of Physiology - Cell Physiology, 321(5), C812–C825.

https://doi.org/10.1152/ajpcell.00246.2021

Skrabalova, J., Drastichova, Z., & Novotny, J. (2013). Morphine as a potential oxidative stress-causing agent. Mini-Reviews in Organic Chemistry, 10(4), 367–372.

https://doi.org/10.2174/1570193x113106660031

Spetea, M., & Schmidhammer, H. (2020). Opioids and their receptors: Present and emerging concepts in opioid drug discovery. Molecules, 25(23).

https://doi.org/10.3390/molecules25235658

Su, L. J., Zhang, J. H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z. Y. (2019). Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 2019.

https://doi.org/10.1155/2019/5080843

Sun, S., Erchova, I., Sengpiel, F., & Votruba, M. (2020). Opa1 deficiency leads to diminished mitochondrial bioenergetics with compensatory increased mitochondrial motility. Investigative Ophthalmology and Visual Science, 61(6).

https://doi.org/10.1167/IOVS.61.6.42

Tarmizi, A. A., Adam, S. H., Nik Ramli, N. N., Hadi, N. A., Abdul Mutalib, M., Tang, S. G. H., & Mokhtar, M. H. (2023). The ameliorative effects of selenium nanoparticles (SENPs) on diabetic rat model: A Narrative review. Sains Malaysiana, 52(7), 2037-2053.

https://doi.org/10.17576/jsm-2023-5207-12

Taskiran, A. S., & Avci, O. (2021). Effect of captopril, an angiotensin-converting enzyme inhibitor, on morphine analgesia and tolerance in rats, and elucidating the inflammation and endoplasmic reticulum stress pathway in this effect. Neuroscience Letters, 741, 135504.

https://doi.org/10.1016/j.neulet.2020.135504

Teleanu, R. I., Niculescu, A. G., Roza, E., Vladâcenco, O., Grumezescu, A. M., & Teleanu, D. M. (2022). Neurotransmitters—Key factors in neurological and neurodegenerative disorders of the central nervous system. International Journal of Molecular Sciences, 23(11).

https://doi.org/10.3390/ijms23115954

Tian, X., Zhou, Y., Wang, Y., Zhang, S., Feng, J., Wang, X., Guo, H., Fan, R., Feng, N., Jia, M., Gu, X., Li, J., Yang, L., Wang, Y., Li, J., Zheng, G., Fu, F., & Pei, J. (2019). Mitochondrial dysfunction and apoptosis are attenuated on-opioid receptor activation through AMPK/GSK-3β pathway after myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology, 73(2), 70–81.

https://doi.org/10.1097/FJC.0000000000000635

Treacy, O., Brown, N. N., & Dimeski, G. (2019). Biochemical evaluation of kidney disease. Translational Andrology and Urology, 8(4), S214–S223.

https://doi.org/10.21037/tau.2018.10.02

Trescot, A. M., Datta, S., Lee, M., & Hansen, H. (2008). Opioid Pharmacology. 1975(3), 133–154.

Umukoro, N. N., Aruldhas, B. W., Rossos, R., Pawale, D., Renschler, J. S., & Sadhasivam, S. (2021). Pharmacogenomics of oxycodone: a narrative literature review. Pharmacogenomics, 22(5), 275–290.

https://doi.org/10.2217/pgs-2020-0143

Vaja, R., & Rana, M. (2023). Drugs and the liver. Anaesthesia and Intensive Care Medicine, 24(9), 536–542.

https://doi.org/10.1016/j.mpaic.2023.05.021

Wang, K., Liu, Z., Zhao, M., Zhang, F., Wang, K., Feng, N., Fu, F., Li, J., Li, J., Liu, Y., Zhang, S., Fan, R., Guo, H., & Pei, J. (2020). κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway. European Journal of Pharmacology, 874(February), 172987.

https://doi.org/10.1016/j.ejphar.2020.172987

Wilson, S. H., Hellman, K. M., James, D., Adler, A. C., & Chandrakantan, A. (2021). Mechanisms, diagnosis, prevention and management of perioperative opioid-induced hyperalgesia. Pain Management, 11(4), 405–417.

https://doi.org/10.2217/pmt-2020-0105

Xia, W., Liu, G., Shao, Z., Xu, E., Yuan, H., Liu, J., & Gao, L. (2020). Toxicology of tramadol following chronic exposure based on metabolomics of the cerebrum in mice. Scientific Reports, 10(1), 1–11.

https://doi.org/10.1038/s41598-020-67974-8

Xiang, M., Lu, Y., Xin, L., Gao, J., Shang, C., Jiang, Z., Lin, H., Fang, X., Qu, Y., Wang, Y., Shen, Z., Zhao, M., & Cui, X. (2021). Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxidative Medicine and Cellular Longevity, 2021.

https://doi.org/10.1155/2021/6614009

Zeng, X., Geng, W., Wang, Z., & Jia, J. (2020). Morphine addiction and oxidative stress : The potential effects of Thioredoxin-1. Frontiers in Pharmacology 11, (February), 1–6.

https://doi.org/10.3389/fphar.2020.00082

Zhao, R. Z., Jiang, S., Zhang, L., & Yu, Z. Bin. (2019). Mitochondrial electron transport chain, ROS generation and uncoupling (Review). International Journal of Molecular Medicine, 44(1), 3–15.

https://doi.org/10.3892/ijmm.2019.4188

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Thur Sina Alkesah, Nik Nasihah Nik Ramli, Nur Alya Syarafina Moh Salleh, Muhamad Arif Shahariah, Ashok Kumar Jeppu, Mohamad Halim Mohamad Shariff