Lawsone attenuates acute low dose ethanol-induced skin inflammation in A431 epidermoid carcinoma skin cells and its possible mechanisms in targeting interleukin (IL)-1α in silico
PDF

Keywords

Acute inflammatory skin condition
lawsone
IL-1α
meaningful interaction comparison

How to Cite

Zulkefle, H. S., Abdullah, S. S. ., Mohammad Latif, M. A., & Md Tohid, S. F. (2024). Lawsone attenuates acute low dose ethanol-induced skin inflammation in A431 epidermoid carcinoma skin cells and its possible mechanisms in targeting interleukin (IL)-1α in silico. Life Sciences, Medicine and Biomedicine, 8(1). https://doi.org/10.28916/lsmb.8.1.2024.162

Abstract

Standard treatment for acute skin inflammatory conditions comes with unwanted side effects. Traditionally, Lawsonia inermis has been used to treat skin-related ailments, with lawsone as the main active phytochemical is predicted to inhibit a skin pro inflammatory cytokine, IL-1α. This study is aimed to evaluate the anti- inflammatory effect of lawsone in acute ethanol-induced skin inflammatory condition in vitro, by targeting IL-1α in silico. Basically, the IC50 of lawsone on human epidermoid carcinoma cell line (A431) was obtained by using MTT proliferation assay, followed by acute low dose ethanol-induced inflammatory skin condition on A431 cells to determine cell viability. Next, molecular docking study was done by utilizing Autodock Vina software, and further analyzed by ProteinsPlus and PyMol softwares. Meaningful interaction that exist in the binding of lawsone to IL-1α was determined by molecular docking results comparison with two other compounds (kirenol and curcumin diglucoside). In vitro study showed the IC50 of lawsone in low cytotoxicity level at 150 µM. Skin anti-inflammatory assay indicated that lawsone has highly significant (p<0.05) anti-inflammatory activity at 9.375 µM at low concentration, but not effective at higher concentrations (more than 18.75 µM). In silico studies indicated binding of lawsone to IL-1α with top binding affinity of -5.2 kcal/mol, at binding residues of Asp65 and Ile68. Docking comparison analysis to determine meaningful interaction comparison indicated three key IL-1α binding residues common to most tested compounds, such as  Ile68 and Asp65 thus supported the predicted mechanistic pathway. This highlighted lawsone potential as a future skin anti-inflammatory agent with minimal toxicity.

https://doi.org/10.28916/lsmb.8.1.2024.162
PDF

References

Adeli-Sardou, M., Yaghoobi, M. M., Torkzadeh-Mahani, M., & Dodel, M. (2019). Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibres for skin tissue regeneration. International Journal of Biological Macromolecules, 124, 478–491.

https://doi.org/10.1016/j.ijbiomac.2018.11.237

Ali, B. H., Bashir, A. K., & Tanira, M. O. (1995). Anti-inflammatory, antipyretic, and analgesic effects of Lawsonia inermis L. (henna) in rats. Pharmacology, 51(6), 356–363.

https://doi.org/10.1159/000139347

Biradar, S., & Veeresh, B. (2013). Protective effect of lawsone on L-Arginine induced acute pancreatitis in rats. Indian Journal of Experimental Biology, 51(3), 256-261.

Bou-Dargham, M. J., Khamis, Z. I., Cognetta, A. B., & Sang, Q.-S. A. (2017). The role of Interleukin-1 in inflammatory and malignant human diseases and the rationale for targeting Interleukin-1 alpha. Medicinal Research Reviews, 37(1), 180-216.

https://doi.org/10.1002/med.21406

Borade, A. S., Kale, B. N., & Shete, R. V. (2011). A phytopharmacological review on Lawsonia inermis (Linn.). International Journal of Pharmaceutical & Life Sciences, 2(1), 536–541. Retrieved from

http://www.ijplsjournal.com/issues%20PDF%20files/jan2011/10.pdf

Cartner, T., Brand, N., Tian, K., Saud, A., Carr, T., Stapleton, P., Lane, M. E., & Rawlings, A. V. (2017). Effect of different alcohols on stratum corneum kallikrein 5 and phospholipase A 2 together with epidermal keratinocytes and skin irritation. International Journal of Cosmetic Science, 39, 188–196.

https://doi.org/10.1111/ics.12364

Chaudhary, G., Goyal, S., & Poonia, P. (2010). Lawsonia inermis Linnaeus: A Phytopharmacological Review. International Journal of Pharmaceutical Sciences and Drug Research, 2(2), 91-98. Retrieved from

https://ijpsdronline.com/index.php/journal/article/view/89

Chengaiah, B., Mallikarjuna Rao, K., Mahesh Kumar, K., Alagusundaram, M., & Madhusudhana Chetty, C. (2010). Medicinal importance of natural dyes – A review. International Journal of PharmTech Research, 2(1), 144 – 154. Retrieved from

https://sphinxsai.com/sphinxsaivol_2no.1/pharmtech_vol_2no.1/PharmTech_Vol_2No.1PDF/PT=24%20(144-154).pdf

Coondoo, A., Phiske, M., Verma, S., & Lahiri, K. (2014). Side-effects of topical steroids: A long overdue revisit. Indian Dermatology Online Journal, 5(4), 416-425.

https://doi.org/10.4103/2229-5178.142483

Devaraj, N. K., Abdul Rashid, A., Abdul Manap, A. H., & Nasir, S. (2019). Topical corticosteroids in clinical practice. Medical Journal of Malaysia, 74(2), 187-189. Retrieved from

https://e-mjm.org/2019/v74n2/topical-corticosteroids.pdf

Dinarello, C. A. (2009). Immunological and inflammatory functions of the Interleukin-1 family. Annual Review of Immunology, 27(1), 519-550.

https://doi.org/10.1146/annurev.immunol.021908.132612

Fahrrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., & Rarey, M. (2017). ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Research, 45(W337-W343).

https://doi.org/10.1093/nar/gkx333

Feldmeyer, L., Werner, S., French, L. E., & Beer, H.-D. (2010). Interleukin-1, inflammasomes and the skin. European Journal of Cell Biology, 89(9), 638–644.

https://doi.org/10.1016/j.ejcb.2010.04.008

Feghali, C. A., & Wright, T. M. (1997). Cytokines in acute and chronic inflammation. Frontiers in Bioscience, 2, d12-d26.

https://doi.org/10.2741/a171

Fenini, G., Contassot, E., & French, L. E. (2017). Potential of IL-1, IL-18 and inflammasome inhibition for the treatment of inflammatory skin diseases. Frontiers in Pharmacology, 8, 278.

https://doi.org/10.3389/fphar.2017.00278

Hsouna, A., Trigui, M., Culioli, G., Blache, Y., & Jaoua, S. (2011). Antioxidant constituents from Lawsona inermis leaves: Isolation, structure elucidation and antioxidative capacity. Food Chemistry, 125(1), 193-200.

http://dx.doi.org/10.1016/j.foodchem.2010.08.060

Jeffrey, G. A. (1999). An introduction to hydrogen bonding. In Minch, M. J. (Ed.), Journal of Chemical Education, 76(6), 759. Oxford, OX: Oxford University Press.

https://doi.org/10.1021/ed076p759.1

Jensen, L. E. (2010). Targeting the IL-1 family members in skin inflammation. Current Opinion in Investigational Drugs, 11(11), 1211-1220.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059231/

Jordão, A. K., Jordão, J., Vargas, M. D., Pinto, A. C., De F., Da Silva, C., & Ferreira, V. F. (2015). Lawsone in organic synthesis. RSC Advances, 5, 67909-67943.

https://doi.org/10.1039/c5ra12785h

Katzung, B. G. (1998). Basic Principles: Introduction. In Basic and Clinical Pharmacology. Stamford, Conn: Appleton & Lange.

Kirkland, D., & Marzin, D. (2003). An assessment of the genotoxicity of 2-hydroxy-1,4-naphthoquinone, the natural dye ingredient of henna. Mutation Research, 537(2), 183-199.

https://doi.org/10.1016/s1383-5718(03)00077-9

Klaus, V., Hartmann, T., Gambini, J., Graf, P., Stahl, W., Hartwig, A., & Klotz, L. O. (2010). 1,4-naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Archives of Biochemistry and Biophysics, 496, 93–100.

https://doi.org/10.1016/j.abb.2010.02.002

Kraeling, M. E., Bronaugh, R. L., & Jung, C. T. (2007). Absorption of lawsone through human skin. Cutaneous and Ocular Toxicology, 26(1), 45-56.

https://doi.org/10.1080/15569520601183856

Labriola-Tompkins, E., Chandran, C., Varnell, T. A., Madison, V. S., & Ju, G. (1993). Structure–function analysis of human IL-1α: Identification of residues required for binding to the human type I IL-1 receptor. Protein Engineering, Design and Selection, 6(5), 535-539.

https://doi.org/10.1093/protein/6.5.535

Lachenmeier, D. W. (2008). Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. Journal of Occupational Medicine and Toxicology, 3, 26.

https://doi.org/10.1186/1745-6673-3-26

Lee, H., Cheong, K. A., Kim, J.-Y., Kim, N.-H., Noh, M., & Lee, A.-Y. (2018). IL-1 receptor antagonist reduced chemical-induced keratinocyte apoptosis through antagonism to IL-1α/IL-1ß. Biomolecules & Therapeutics (Seoul), 26(4), 417-423.

https://doi.org/10.4062/biomolther.2017.167

Lopez, L., Itzel, L., Flores, N., Danial, S., Belmares, S., Yesenia, S., Galindo, S., & Aide. (2014). Naphthoquinones: Biological properties and synthesis of lawsone and derivatives - A structured review. Vitae, 21(3), 248-258.

https://doi.org/10.17533/udea.vitae.17322

Lozza, L., Moura-Alves, P., Domaszewska, T., et al. (2019). The Henna pigment lawsone activates the aryl hydrocarbon receptor and impacts skin homeostasis. Scientific Reports, 9, 10878.

https://doi.org/10.1038/s41598-019-47350-x

Marzin, D., & Kirkland, D. (2004). 2-Hydroxy-1,4-naphthoquinone, the natural dye of Henna, is non-genotoxic in the mouse bone marrow micronucleus test and does not produce oxidative DNA damage in Chinese hamster ovary cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 560(1), 41-47.

https://doi.org/10.1016/j.mrgentox.2004.02.004

Medzhitov, R. (2010). Inflammation 2010: New adventures of an old flame. Cell, 140(6), 771–776.

https://doi.org/10.1016/j.cell.2010.03.006

Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular Docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157.

https://doi.org/10.2174/157340911795677602

Moldovan, A., Hartmann, C. J., Trenado, C., Meumertzheim, N., Slotty, P. J., Vesper, J., & Groiss, S. J. (2018). Less is more – Pulse width dependent therapeutic window in deep brain stimulation for essential tremor. Brain Stimulation, 11(5), 1132-1139.

https://doi.org/10.1016/j.brs.2018.04.019

Neuman, M. G., Haber, J. A., Malkiewicz, I. M., Cameron, R. G., Katz, G. G., & Shear, N. H. (2002). Ethanol signals for apoptosis in cultured skin cells. Alcohol, 26(3), 179–190.

https://doi.org/10.1016/S0741-8329(02)00198-2

Neuman, M. G., Oruña, L., Coto, G., Lago, G., Nanau, R., & Vincent, M. (2010). Hyaluronic acid signals for repair in ethanol-induced apoptosis in skin cells in vitro. Clinical Biochemistry, 43(10-11), 822-826.

https://doi.org/10.1016/j.clinbiochem.2010.04.005

Nohynek, G. J., Fautz, R., Benech-Kieffer, F., & Toutain, H. (2004). Toxicity and human health risk of hair dyes. Food and Chemical Toxicology, 42(4), 517-543.

https://doi.org/110.1016/j.fct.2003.11.003

Norwegian Scientific Committee for Food Safety. (2005). This report can be accessed at

https://fhi.brage.unit.no/fhi-xmlui/bitstream/handle/11250/2507570/Nes_2005_Ass.pdf?sequence=1

O'Shaughnessy, R. F. L., Choudhary, I., & Harper, J. I. (2010). Interleukin-1 alpha blockade prevents hyperkeratosis in an in vitro model of lamellar ichthyosis. Human Molecular Genetics, 19(13), 2594-2605.

https://doi.org/10.1093/hmg/ddq145

Ozbabacan, S. E., Gursoy, A., Nussinov, R., & Keskin, O. (2014). The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Computational Biology, 10(2), e1003470.

https://doi.org/10.1371/journal.pcbi.1003470

Raja, W., Ovais, M., & Dubey, A. (2013). Phytochemical screening and antibacterial activity of Lawsonia inermis leaf extract. International Journal of Microbiology Research, 4(1), 33-36.

https://www.idosi.org/ijmr/ijmr4(1)13/6.pdf

Ren, X., Gelinas, A. D., Carlowitz, I. V., Janjic, N., & Pyle, A. M. (2017). Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nature Communications, 8(1), Article 810.

https://doi.org/10.1038/s41467-017-00864-2

Robert, C., & Kupper, T. S. (1999). Inflammatory skin diseases, T cells, and immune surveillance. The New England Journal of Medicine, 341(24), 1817-1828.

https://doi.org/10.1056/NEJM199912093412407

Sattar, S., Shabbir, A., Shahzad, M., Akhtar, T., Anjum, S. M., Bourhia, M., Nafidi, H. A., Bin Jardan, Y. A., Dauelbait, M., & Mobashar, A. (2023). Evaluation of anti-inflammatory and immunomodulatory potential of lawsone (2-hydroxy-1,4-naphthoquinone) using pre-clinical rodent model of rheumatoid arthritis. Frontiers in Pharmacology, 14, 1279215.

https://doi.org/10.3389/fphar.2023.1279215

Singh, D. K., & Luqman, S. (2014). Lawsonia inermis (L.): A perspective on anticancer potential of Mehndi/Henna. Biomedical Research and Therapy, 1(4), 112-120.

https://doi.org/10.7603/s40730-014-0018-1

Singh, R. P., & Narke, R. (2015). Preparation and evaluation of phytosome of lawsone. International Journal of Pharmaceutical Sciences and Research, 6(12), 5217-5226.

https://doi.org/10.13040/IJPSR.0975-8232.6(12).5217-26

Suleiman, E. A., & Mohamed, E. A. (2014). In vitro activity of Lawsonia inermis (Henna) on some pathogenic fungi. European Journal of Medicinal Plants.

https://doi.org/10.1155/2014/375932

Tabassum, N., & Hamdani, M. (2014). Plants used to treat skin diseases. Pharmacognosy Reviews, 8, 52-60.

https://doi.org/10.4103/0973-7847.125531

Thind, R., O'Neill, D. W., Del Regno, A., & Notman, R. (2015). Ethanol induces the formation of water-permeable defects in model bilayers of skin lipids. Chemical Communications, 51, 5406-5409.

https://doi.org/10.1039/c4cc08527b

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461.

https://doi.org/10.1002/jcc.21334

Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs, D. R. Jr, Lee, D. H., Shioda, T., Soto, A. M., vom Saal, F. S., Welshons, W. V., Zoeller, T., & Myers, J. P. (2012). Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocrine Reviews, 33(3), 378–455.

https://doi.org/10.1210/er.2011-1050

Wu, J., Qu, Y., Deng, J. X., Liang, W. Y., Jiang, Z. L., Lai, R., & Yu, Q. H. (2017). Molecular docking studies of kirenol a traditional Chinese medicinal compound against rheumatoid arthritis cytokine drug targets (TNF-α, IL-1, and IL-6). Biomedical Research, 28(5), 1992-1995.

Xu, S., Peng, H., Wang, N., & Zhao, M. (2018). Inhibition of TNF-α and IL-1 by compounds from selected plants for rheumatoid arthritis therapy: In vivo and in silico studies. Tropical Journal of Pharmaceutical Research, 17(2), 277.

https://doi.org/10.4314/tjpr.v17i2.12

Yousefi, I., Pakravan, M., Rahimi, H., Bahador, A., Farshadzadeh, Z., & Haririan, I. (2017). An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Materials Science and Engineering: C, 75, 433–444.

https://doi.org/10.1016/j.msec.2017.02.076

Zakaria, Z. A., Mohamed, A. M., Jamil, N. S. M., Rofiee, M. S., Somchit, M. N., Zuraini, A., & Sulaiman, M. R. (2011). In vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of Dicranopteris linearis leaves. African Journal of Biotechnology, 10(2), 273–282.

https://www.ajol.info/index.php/ajb/article/view/137954

Zheng, Y., Humphry, M., Maguire, J., Bennett, M., & Clarke, M. (2013). Intracellular Interleukin-1 receptor 2 binding prevents cleavage and activity of IL-1α, controlling necrosis-induced sterile inflammation. Immunity, 38(2), 285-295.

https://doi.org/10.1016/j.atherosclerosis.2012.10.023

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Array