Bioinformatics in the identification of microorganisms [Provisional Acceptance]

Keywords

microbe identification
bioinformatics
genotypic methods
sequencing
proteomic technologies

How to Cite

Yeoh, C. Y. ., & Cheah, Y. K. (2020). Bioinformatics in the identification of microorganisms [Provisional Acceptance]. Life Sciences, Medicine and Biomedicine, 4(9). https://doi.org/10.28916/lsmb.4.9.2020.64

Abstract

Rapid and accurate identification of microorganisms can be of great value for clinical management. For many fastidious and slow-growing microorganisms, the conventional method used for detection is time-consuming, costly and labour-intensive. Hence, the development of new and improved microbial identification methods are necessary to overcome this bottleneck. Current trend has shifted towards the use of new molecular technologies in genomics and proteomics for bacterial identification and characterization. This mini review will focus on summarizing different types of genotypic and proteomics identification methods, as well as bioinformatics tools used for rapid identification and characterization of microorganisms from various specimens.

https://doi.org/10.28916/lsmb.4.9.2020.64

References

Aagaard, K., Petrosino, J., Keitel, W., Watson, M., Katancik, J., Garcia, N., Patel, S., Cutting, M., Madden, T., Hamilton, H., Harris, E., Gevers, D., Simone, G., McInnes, P., & Versalovic, J. (2013). The human microbiome project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB Journal, 27(3), 1012-1022.

https://doi.org/10.1096/fj.12-220806

Abbasian, F., Lockington, R., Megharaj, M., & Naidu, R. (2015). The integration of sequencing and bioinformatics in metagenomics. Reviews in Environmental Science and Biotechnology, 14(3), 357-383.

https://doi.org/10.1007/s11157-015-9365-7

Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O'Donovan, C., Redaschi, N., & Yeh, L.-S. L. (2004). UniProt: The Universal Protein knowledgebase. Nucleic Acids Research, 32, 115-119.

https://doi.org/10.1093/nar/gkh131

Arango, C., Acosta-Gonzalez, A., Parra-Giraldo, C. M., Sánchez-Quitian, Z. A., Kerr, R., & Diaz, L. E. (2018). Characterization of actinobacterial communities from Arauca river sediments (Colombia) reveals antimicrobial potential presented in low abundant isolates. The Open Microbiology Journal, 12, 181-194.

https://doi.org/10.2174/1874285801812010181

Bansal, A. K. (2005). Bioinformatics in microbial biotechnology--a mini review. Microbial Cell Factories, 4, 19.

https://doi.org/10.1186/1475-2859-4-19

Barba, M. J., Fernández, A., Oviaño, M., Fernández, B., Velasco, D., & Bou, G. (2014). Evaluation of MALDI-TOF mass spectrometry for identification of anaerobic bacteria. Anaerobe, 30, 126-128.

https://doi.org/10.1016/j.anaerobe.2014.09.008

Biswas, S., & Rolain, J. M. (2013). Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. Journal of Microbiological Methods, 92(1), 14-24.

https://doi.org/10.1016/j.mimet.2012.10.014

Borneman, J., & Hartin, R. J. (2000). PCR primers that amplify fungal rRNA genes from environmental samples. Applied and Environmental Microbiology, 66(10), 4356-4360.

https://doi.org/10.1128/AEM.66.10.4356-4360.2000

Clarridge, J. E., & Alerts, C. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840-862.

https://doi.org/10.1128/CMR.17.4.840-862.2004

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072.

https://doi.org/10.1128/AEM.03006-05

Devulder, G., Perrière, G., Baty, F., & Flandrois, J. P. (2003). BIBI, a bioinformatics bacterial identification tool. Journal of Clinical Microbiology, 41(4), 1785-1787.

https://doi.org/10.1128/JCM.41.4.1785-1787.2003

Diament, B. J., & Noble, W. S. (2011). Faster SEQUEST searching for peptide identification from tandem mass spectra. Journal of Proteome Research, 10(9), 3871-3879.

https://doi.org/10.1021/pr101196n

Dieckmann, R., & Malorny, B. (2011). Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology, 77(2), 4136-4146.

https://doi.org/10.1128/AEM.02418-10

Dinsdale, E. A., Edwards, R. A., Hall, D., Angly, F., Breitbart, M., Brulc, J. M., Furlan, M., Desnues, C., Haynes, M., Li, L., McDaniel, L., Moran, M. A., Nelson, K. E., Nilsson, C., Olson, R., Paul, J., Brito, B. R., Ruan, Y., Swan, B. K., Stevens, R., Valentine, D. L., Thurber, R. V., Wegley, L., White, B. A., & Rohwer, F. (2008). Functional metagenomic profiling of nine biomes. Nature, 452(7187), 629-632.

https://doi.org/10.1038/nature06810

Emerson, D., Agulto, L., Liu, H., & Liu, L. (2008). Identifying and characterizing bacteria in an era of genomics and proteomics. Bioscience, 58(10), 925.

https://doi.org/10.1641/B581006

Feil, E. J., Li, B. C., Aanensen, D. M., Hanage, W. P., & Spratt, B. G. (2004). eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of Bacteriology, 186(5), 1518-1530.

https://doi.org/10.1128/JB.186.5.1518-1530.2004

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M., Mckenney, K., Sutton, G., Fitzhugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L. I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., Mcdonald, L. A., Small, K. V, Fraser, C. M., Smith, H. O., & Venter, J. C. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496-512.

https://doi.org/10.1126/science.7542800

Foxman, B., Zhang, L., Koopman, J. S., Manning, S. D., & Marrs, C. F. (2005). Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiologic Perspectives and Innovations, 2, 10.

https://doi.org/10.1186/1742-5573-2-10

Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., Van de Peer, Y., Vandamme, P., Thompson, F. L., & Swings, J. (2005). Opinion: Re-evaluating prokaryotic species. Nature Reviews Microbiology, 3(9), 733-739.

https://doi.org/10.1038/nrmicro1236

Girard, G., Traag, B. A., Sangal, V., Mascini, N., Hoskisson, P. A., Goodfellow, M., & van Wezel, G. P. (2013). A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biology, 3(10), 130073.

https://doi.org/10.1098/rsob.130073

Glish, G. L., & Vachet, R. W. (2003). The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery, 2(2), 140-150.

https://doi.org/10.1038/nrd1011

Gresham, D., Dunham, M. J., & Botstein, D. (2008). Comparing whole genomes using DNA microarrays. Nature Reviews Genetics, 9(4), 291-302.

https://doi.org/10.1038/nrg2335

Hamady, M., & Knight, R. (2009). Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 19(7), 1141-1152.

https://doi.org/10.1101/gr.085464.108

Haneef, J., Shaharyar, M., Husain, A., Rashid, M., Mishra, R., Parveen, S., Ahmed, N., Pal, M., & Kumar, D. (2013). Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids. Journal of Pharmaceutical Analysis, 3(5), 341-348.

https://doi.org/10.1016/j.jpha.2013.03.005

He, Z., Gentry, T. J., Schadt, C. W., Wu, L., Liebich, J., Chong, S. C., Huang, Z., Wu, W., Gu, B., Jardine, P., Criddle, C., & Zhou, J. (2007). GeoChip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal, 1(1), 67-77.

https://doi.org/10.1038/ismej.2007.2

Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research, 17(3), 377-386.

https://doi.org/10.1101/gr.5969107

Jolley, K. A., Bliss, C. M., Bennett, J. S., Bratcher, H. B., Brehony, C., Colles, F. M., Wimalarathna, H., Harrison, O. B., Sheppard, S. K., Cody, A. J., Maiden, M. C. J. (2012). Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology, 158, 1005-1015.

https://doi.org/10.1099/mic.0.055459-0

Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S.-C., Jeon, Y. S., Lee, J.-H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716-721.

https://doi.org/10.1099/ijs.0.038075-0

Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576-1585.

https://doi.org/10.1128/AEM.01996-06

Magdeldin, S., Enany, S., Yoshida, Y., Xu, B., Zhang, Y., Zureena, Z., Lokamani, I., Yaoita, E., & Yamamoto, T. (2014). Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clinical Proteomics, 11(1), 16.

https://doi.org/10.1186/1559-0275-11-16

Markowitz, V. M., Chen, I. M. A., Chu, K., Szeto, E., Palaniappan, K., Grechkin, Y., Ratner, A., Jacob, B., Pati, A., Huntemann, M., Liolios, K., Pagani, I., Anderson, I., Mavromatis, K., Ivanova, N. N., & Kyrpides, N. C. (2012). IMG/M: The integrated metagenome data management and comparative analysis system. Nucleic Acids Research, 40(1), 123-129.

https://doi.org/10.1093/nar/gkr975

Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J., & Edwards, R. (2008). The metagenomics RAST server ˗ a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9(1), 386.

https://doi.org/10.1186/1471-2105-9-386

Millar, B. C., Xu, J., & Moore, E. (2007). Molecular diagnostics of medically important bacterial infections. Current Issues in Molecular Biology, 9, 21-40.

Mocali, S., & Benedetti, A. (2010). Exploring research frontiers in microbiology: The challenge of metagenomics in soil microbiology. Research in Microbiology, 161(6), 497-505.

https://doi.org/10.1016/j.resmic.2010.04.010

Nagarajan, K., Loh, K.-C., & Swarup, S. (2013). Bioinformatics and molecular biology for the quantification of closely related bacteria. Applied Microbiology and Biotechnology, 97(14), 6489-6502.

https://doi.org/10.1007/s00253-013-4943-5

Nilsen, M. M., Uleberg, K.-E., Janssen, E. A. M., Baak, J. P. A., Andersen, O. K., & Hjelle, A. (2011). From SELDI-TOF MS to protein identification by on-chip elution. Journal of Proteomics, 74(12), 2995-2998.

https://doi.org/10.1016/j.jprot.2011.06.027

Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846.

https://doi.org/10.1038/35015709

Perkins, D. N., Pappin, D. J., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551-3567.

https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

Proctor, L. M. (2011). The human microbiome project in 2011 and beyond. Cell Host and Microbe, 10(4), 287-291.

https://doi.org/10.1016/j.chom.2011.10.001

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(1), 590-596.

https://doi.org/10.1093/nar/gks1219

Rastogi, G., & Sani, R. K. (2011). Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment. In I. Ahmad., F. Ahmad., & J. Pichtel (Eds), Microbes and Microbial Technology, pp. 29-58. New York: Springer.

https://doi.org/10.1007/978-1-4419-7931-5_2

Rodrigo, M. A. M., Zitka, O., Krizkova, S., Moulick, A., Adam, V., & Kizek, R. (2014). MALDI-TOF MS as evolving cancer diagnostic tool: A review. Journal of Pharmaceutical and Biomedical Analysis, 95, 245-255.

https://doi.org/10.1016/j.jpba.2014.03.007

Rong, X., & Huang, Y. (2010). Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. International Journal of Systematic and Evolutionary Microbiology, 60, 696-703.

https://doi.org/10.1099/ijs.0.012419-0

Ruiz-Garbajosa, P., Bonten, M. J. M., Robinson, D. A., Top, J., Nallapareddy, S. R., Torres, C., Coque, T. M., Canton, R., Baquero, F., Murray, B. E., del Campo, R., & Willems, R. J. L. (2006). Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. Journal of Clinical Microbiology, 44(6), 2220-2228.

https://doi.org/10.1128/JCM.02596-05

Santos, T., Capelo, J. L., Santos, H. M., Oliveira, I., Marinho, C., Gonçalves, A., Araújo, J. E., Poeta, P., & Igrejas, G. (2015). Use of MALDI-TOF mass spectrometry fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates. Journal of Proteomics, 127, 321-331.

https://doi.org/10.1016/j.jprot.2015.02.017

Singh, A., & Kumar, N. (2013). A review on DNA microarray technology. International Journal of Current Research and Review, 5(22), 1-5.

Smith, F. M., Gallagher, W. M., Fox, E., Stephens, R. B., Rexhepaj, E., Petricoin, E. F., Liotta, L., Kennedy, M. J., & Reynolds, J. V. (2007). Combination of SELDI-TOF-MS and data mining provides early-stage response prediction for rectal tumors undergoing multimodal neoadjuvant therapy. Annals of Surgery, 245(2), 259-266.

https://doi.org/10.1097/01.sla.0000245577.68151.bd

Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K., & Schmidt, T. M. (2015). rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research, 43(1), 593-598.

https://doi.org/10.1093/nar/gku1201

Sun, J. F., Ke, B. X., Huang, Y. H., He, D. M., Li, X., Liang, Z. M., & Ke, C. W. (2014). The molecular epidemiological characteristics and genetic diversity of Salmonella Typhimurium in Guangdong, China. PLoS One, 9(11), e113145.

https://doi.org/10.1371/journal.pone.0113145

Sun, S., Chen, J., Li, W., Altintas, I., Lin, A., Peltier, S., Stocks, K., Allen, E. E., Ellisman, M., Grethe, J., & Wooley, J. (2011). Community cyberinfrastructure for advanced microbial ecology research and analysis: The CAMERA resource. Nucleic Acids Research, 39, 546-551.

https://doi.org/10.1093/nar/gkq1102

Tabish, M., Azim, S., Hussain, M. A., Rehman, S. U., Sarwar, T., & Ishqi, H. M. (2013). Bioinformatics Approaches in Studying Microbial Diversity. In A, Malik., E. Grohmann., & M. Alves (Eds), Management of Microbial Resources in the Environment, pp. 119-140. Dordrecht: Springer.

https://doi.org/10.1007/978-94-007-5931-2_6

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutioanry distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.

https://doi.org/10.1093/molbev/msr121

Tang, Y. -W., Ellis, N. M., Hopkins, M. K., Smith, D. H., Dodge, D. E., & Persing, D. H. (1998). Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. Journal of Clinical Microbiology, 36(12), 3674-3679.

https://doi.org/10.1128/JCM.36.12.3674-3679.1998

Tatusova, T., Ciufo, S., Federhen, S., Fedorov, B., McVeigh, R., O'Neill, K., Tolstoy, I., & Zaslavsky, L. (2015). Update on RefSeq microbial genomes resources. Nucleic Acids Research, 43(1), 599-605.

https://doi.org/10.1093/nar/gku1062

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: Exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804-810.

https://doi.org/10.1038/nature06244

Uchiyama, I., Mihara, M., Nishide, H., & Chiba, H. (2015). MBGD update 2015: Microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data. Nucleic Acids Research, 43(1), 270-276.

https://doi.org/10.1093/nar/gku1152

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267.

https://doi.org/10.1128/AEM.00062-07

Wilson, K. H., Wilson, W. J., Jennifer, L., Desantis, T. Z., Viswanathan, V. S., Kuczmarski, T. A., Andersen, G. L., & Radosevich, J. L. (2002). High-density microarray of small-subunit ribosomal DNA probes. Applied and Environmental Microbiology, 68(5), 2535-2541.

https://doi.org/10.1128/AEM.68.5.2535-2541.2002

Wolters, M., Rohde, H., Maier, T., Belmar-Campos, C., Franke, G., Scherpe, S., Aepfelbacher, M., & Christner, M. (2011). MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. International Journal of Medical Microbiology, 301(1), 64-68.

https://doi.org/10.1016/j.ijmm.2010.06.002

Yadav, A. K., Kumar, D., & Dash, D. (2011). MassWiz: A novel scoring algorithm with target-decoy based analysis pipeline for tandem mass spectrometry. Journal of Proteome Research, 10(5), 2154-2160.

https://doi.org/10.1021/pr200031z

Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G.A., & Ma, B. (2011). PEAKS DB: De Novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & Cellular Proteomics, 11(4), M111.010587.

https://doi.org/10.1074/mcp.M111.010587

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Array