Long cryopreserved lab-adapted Plasmodium falciparum increases resistance to chloroquine but not its susceptibility [Provisional Acceptance]

Keywords

Plasmodium falciparum
chloroquine resistance
SNPs
PfCRT
PfMDR-1

How to Cite

Pua, J. Y., Abu Bakar, N., Nik Kamarudin, N. A. A. ., Ghazali, S. Z. ., & Khairul Mohd Fadzli Mustaffa. (2020). Long cryopreserved lab-adapted Plasmodium falciparum increases resistance to chloroquine but not its susceptibility [Provisional Acceptance]. Life Sciences, Medicine and Biomedicine, 4(9). https://doi.org/10.28916/lsmb.4.9.2020.66

Abstract

Introduction: Plasmodium falciparum (P. falciparum) is a deadly protozoan that is accountable for malaria and chloroquine was the first-line antimalarial drug before its withdrawal and replaced by artemisinin. To date, several studies showed that P. falciparum had regained its sensitivity towards chloroquine after its withdrawal for decades. By understanding the basic principle and mechanism of chloroquine resistance in P. falciparum, at the molecular level, it would be valuable prior to the re-introduction of chloroquine as a first-line anti-malarial drug for malaria treatment. Thus, this study was conducted to determine the chloroquine resistance level of long preserved lab-adapted P. falciparum strain. Methodology: By using 14 years (2006-2020) cryopreserved chloroquine-sensitive (3D7) and chloroquine-resistant (W2) lab-adapted P. falciparum strains, the strains were subjected to continuous culture for three months before in vitro drug susceptibility assay and single nucleotide polymorphisms (SNP) analysis on Pfcrt and Pfmdr-1 gene for both strains. Results: This study shows the IC50 chloroquine of lab-adapted P. falciparum 3D7 and W2 strains were at 32.98 nM and 691.21 nM, respectively and both strains showed 3-fold higher IC50 when compared to their susceptibility before cryopreserved (3D7; 13.84nM and W2; 208.27 nM). The SNPs result showed a consistent amino acid substitution at position 76 (K to T) on PfCRT and 86 (N to Y) in Pfmdr-1 gene which concordance with other studies before preservation. Conclusion: Thus, this study shows that long cryopreserved of lab-adapted P. falciparum increases the chloroquine resistance level but not exhibited any change in susceptibility.

https://doi.org/10.28916/lsmb.4.9.2020.66

References

Antony, H. A., Das, S., Parija, S. C. & Padhi, S. (2016). Sequence analysis of pfcrt and pfmdr1 genes and its association with chloroquine resistance in Southeast Indian Plasmodium falciparum isolates. Genomics Data, 8, 85-90.

https://doi.org/10.1016/j.gdata.2016.04.010

Baniecki, M. L., Wirth, D. F. & Clardy, J. (2007). High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrobial Agents and Chemotherapy, 51(2), 716-723.

https://doi.org/10.1128/AAC.01144-06

Basco, L. K., & Ringwald, P. (2001). Analysis of the key pfcrt point mutation and in vitro and in vivo response to chloroquine in Yaounde, Cameroon. The Journal of infectious diseases, 183(12), 1828-1831.

https://doi.org/10.1086/320726

Butcher, G. A., & Cohen, S. (1971). Short-term culture of Plasmodium knowlesi. Parasitology, 62(2), 309-320.

https://doi.org/10.1017/S0031182000071547

Cheruiyot, J., Ingasia, L.A., Omondi, A.A., Juma, D.W., Opot, B.H., Ndegwa, J.M., Mativo, J., Cheruiyot, A.C., Yeda, R., Okudo, C. and Muiruri, P. 2014. Polymorphisms in Pfmdr1, Pfcrt, and Pfnhe1 genes are associated with reduced in vitro activities of quinine in Plasmodium falciparum isolates from western Kenya. Antimicrobial Agents and Chemotherapy, 58(7), 3737-3743

https://doi.org/10.1128/AAC.02472-14

Cui, L., Mharakurwa, S., Ndiaye, D., Rathod, P. K. & Rosenthal, P. J. (2015a). Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network. The American Journal of Tropical Medicine and Hygiene, 93(3 Suppliment), 57-68.

https://doi.org/10.4269/ajtmh.15-0007

Dennull, R. A., Reinbold, D. D., Waters, N. C. & Johnson, J. D. (2009). Assessment of malaria in vitro drug combination screening and mixed-strain infections using the malaria Sybr green I-based fluorescence assay. Antimicrobial Agents and Chemotherapy, 53(6), 2557-2563.

https://doi.org/10.1128/AAC.01370-08

Dery, V., Duah, N. O., Ayanful-Torgby, R., Matrevi, S. A., Anto, F., & Quashie, N. B. (2015). An improved SYBR Green-1-based fluorescence method for the routine monitoring of Plasmodium falciparum resistance to anti-malarial drugs. Malaria journal, 14(1), 1-6.

https://doi.org/10.1186/s12936-015-1011-x

Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekunov, S. M., Ferdig, M. T., ... & Wootton, J. C. (2000). Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Molecular cell, 6(4), 861-871.

https://doi.org/10.1016/S1097-2765(05)00077-8

Kaddouri, H., Nakache, S., Houzé, S., Mentré, F., & Le Bras, J. (2006). Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from Africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrobial agents and chemotherapy, 50(10), 3343-3349.

https://doi.org/10.1128/AAC.00367-06

Khairul, M. F. M., Min, T. H., Low, J. H., Nasriyyah, C. H. C., A shikin, A. N., Norazmi, M. N., ... & Raju, S. S. (2006). Fluoxetine potentiates chloroquine and mefloquine effect on multidrug-resistant Plasmodium falciparum in vitro. Japanese journal of infectious diseases, 59(5), 329.

Lambros, C. & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. The Journal of Parasitology, 418-420.

https://doi.org/10.2307/3280287

Li, J., Chen, J., Xie, D., Eyi, U. M., Matesa, R. A., Obono, M. M. O., Ehapo, C. S., Yang, L., Yang, H., Lin, M., Wu, W., Wu, K., Li, S. & Chen, Z. (2015). Molecular mutation profile of Pfcrt and Pfmdr1 in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Infection, Genetics and Evolution, 36, 552-556.

https://doi.org/10.1016/j.meegid.2015.08.039

Mehlotra, R. K., Howes, R. E., Rakotomanga, T. A., Ramiranirina, B., Ramboarina, S., Franchard, T., ... & Grimberg, B. T. (2017). Long-term in vitro culture of Plasmodium vivax isolates from Madagascar maintained in Saimiri boliviensis blood. Malaria journal, 16(1), 1-13.

https://doi.org/10.1186/s12936-017-2090-7

Memorandum, W. H. O. (1981). Malaria parasite strain characterization, cryopreservation, and banking of isolates. Bull World Health Organ, 59, 537-548.

Min, T. H., Khairul, M. F. M., Low, J. H., Nasriyyah, C. C., A'shikin, A. N., Norazmi, M. N., ... & Raju, S. S. (2007). Roxithromycin potentiates the effects of chloroquine and mefloquine on multidrug-resistant Plasmodium falciparum in vitro. Experimental parasitology, 115(4), 387-392.

https://doi.org/10.1016/j.exppara.2006.10.004

Moers, A. P., Hallett, R. L., Burrow, R., Schallig, H. D., Sutherland, C. J. & van Amerongen, A. (2015). Detection of single-nucleotide polymorphisms in Plasmodium falciparum by PCR primer extension and lateral flow immunoassay. Antimicrobial Agents and Chemotherapy, 59(1), 365-371.

https://doi.org/10.1128/AAC.03395-14

Mullis, K. B. (1987). U.S. Patent No. 4,683,202. Washington, DC: U.S. Patent and Trademark Office.

Njokah, M.J., Kang'ethe, J.N., Kinyua, J., Kariuki, D. and Kimani, F.T. 2016. In vitro selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemisinin. Malaria Journal, 15(1), 381.

https://doi.org/10.1186/s12936-016-1443-y

Perlmann, P. & Troye-Blomberg, M. (2000). Malaria blood-stage infection and its control by the immune system. Folia biologica, 46(6), 210-218.

Picot, S., Olliaro, P., de Monbrison, F., Bienvenu, A. L., Price, R. N. & Ringwald, P. (2009). A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malaria Journal, 8, 89.

https://doi.org/10.1186/1475-2875-8-89

Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K., & Cowman, A. F. (2000). Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature, 403(6772), 906-909.

https://doi.org/10.1038/35002615

Ross, L. S., Dhingra, S. K., Mok, S., Yeo, T., Wicht, K. J., Kumpornsin, K., Takala-Harrison, S., Witkowski, B., Fairhurst, R. M., Ariey, F., Menard, D. & Fidock, D. A. (2018). Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nature Communications, 9(1), 3314.

https://doi.org/10.1038/s41467-018-05652-0

Sanchez, C. P., Stein, W. D. & Lanzer, M. (2007). Is PfCRT a channel or a carrier? Two competing models explaining chloroquine resistance in Plasmodium falciparum. Trends in Parasitology, 23(7), 332-339.

https://doi.org/10.1016/j.pt.2007.04.013

Sabbatani, S., Fiorino, S. & Manfredi, R. (2010). The emerging of the fifth malaria parasite (Plasmodium knowlesi). A public health concern? The Brazilian Journal of Infectious Diseases, 14(3), 299-309.

https://doi.org/10.1016/S1413-8670(10)70062-3

Schuster, F.L., 2002. Cultivation of Plasmodium spp. Clinical microbiology reviews, 15(3), pp.355-364.

https://doi.org/10.1128/CMR.15.3.355-364.2002

Sharma, A. & Khanduri, U. (2009). How benign is benign tertian malaria? Journal of Vector Borne Diseases, 46(2), 141.

Sidhu, A. B. S., Verdier-Pinard, D., & Fidock, D. A. (2002). Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science, 298(5591), 210-213.

https://doi.org/10.1126/science.1074045

Siswantoro, H., Russell, B., Ratcliff, A., Prasetyorini, B., Chalfein, F., Marfurt, J., Kenangalem, E., Wuwung, M., Piera, K. & Ebsworth, E. (2011). In vivo and in vitro efficacy of chloroquine against Plasmodium malariae and P. ovale in Papua, Indonesia. Antimicrobial Agents and Chemotherapy, 55(1), 197-202.

https://doi.org/10.1128/AAC.01122-10

Sutherland, C. J., Tanomsing, N., Nolder, D., Oguike, M., Jennison, C., Pukrittayakamee, S., Dolecek, C., Hien, T. T., Do Rosário, V. E. & Arez, A. P. (2010). Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. The Journal of Infectious Diseases, 201(10), 1544-1550.

https://doi.org/10.1086/652240

Tang, T.-H. T., Salas, A., Ali-Tammam, M., del Carmen Martínez, M., Lanza, M., Arroyo, E. & Rubio, J. M. (2010). First case of detection of Plasmodium knowlesi in Spain by Real Time PCR in a traveller from Southeast Asia. Malaria Journal, 9(1), 219.

https://doi.org/10.1186/1475-2875-9-219

Thomas, S. M., Ndir, O., Dieng, T., Mboup, S., Wypij, D., Maguire, J. H. & Wirth, D. F. (2002). In vitro chloroquine susceptibility and PCR analysis of pfcrt and PfMDR-1 polymorphisms in Plasmodium falciparum isolates from Senegal. The American Journal of Tropical Medicine and Hygiene, 66(5), 474-480.

https://doi.org/10.4269/ajtmh.2002.66.474

Valderramos, S. G. & Fidock, D. A. (2006). Transporters involved in resistance to antimalarial drugs. Trends in Pharmacological Sciences, 27(11), 594-601.

https://doi.org/10.1016/j.tips.2006.09.005

Vathsala, P., Pramanik, A., Dhanasekaran, S., Devi, C. U., Pillai, C., Subbarao, S., Ghosh, S., Tiwari, S., Sathyanarayan, T. & Deshpande, P. (2004). Widespread occurrence of the Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene haplotype SVMNT in P. falciparum malaria in India. The American Journal of Tropical Medicine and Hygiene, 70(3), 256-259.

https://doi.org/10.4269/ajtmh.2004.70.256

Wellems, T. E. & Plowe, C. V. (2001). Chloroquine-resistant malaria. The Journal of Infectious Diseases, 184(6), 770-776.

https://doi.org/10.1086/322858

World Health Organization. (‎2019)‎. World Malaria Report 2018, World Heath Organization. Available at: https://apps.who.int/iris/handle/10665/275867.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Array