Construction and investigation of plasmid-induced effects on growth of GFP-expressing Salmonella strains
PDF
HTML

Keywords

Salmonella Agona
Green fluorescent protein
BacterioScan™
Growth curve
Bacterial therapy

How to Cite

Construction and investigation of plasmid-induced effects on growth of GFP-expressing Salmonella strains. (2021). Life Sciences, Medicine and Biomedicine, 5(1). https://doi.org/10.28916/lsmb.5.1.2021.73

Abstract

Background: Bacteria such as the Salmonella species had been extensively studied not only for its mechanism of pathogenicity, but for its beneficial utilisation in bacterial-mediated tumour therapy. Genetically modified bacterial strain, BDLA Salmonella Agona (BDLA S. Agona) had shown great promise as tumour targeting and suppressing agent. By, constructing green fluorescent protein (GFP) expressing of this strain, it would be beneficial as it could be used to further study the interaction of the BDLA S. Agona strain with various cancerous cells and the host at the systemic level. However, GFP plasmid-induced strains may exhibit growth defects, and this was investigated in this study. Methods: The GFP-transformed Salmonella strains were constructed, and the replication rate of the strains were investigated using the BacterioScan™ 216R instrument. The replication rate between the strains was compared from the 24-hour data collected and analysed as growth curves. The 24-hour growth curves were constructed using the Log CFU/mL and OD650 data collected by the instrument. Results: It was observed from the growth curves that the transformation of the GFP plasmid into different Salmonella strains did not affect the replication rate of the bacteria. Discussion and Conclusion: This finding answers the objective of the study, and it was concluded that incorporation of the GFP plasmid does not cause any negative effect on bacterial growth. GFP-transformed Salmonella, specifically the BDLA S. Agona strain, could be utilised as a powerful tool for future studies on the mechanism of tumour suppression and real-time in vivo biodistribution of the strain.

PDF
HTML

References

Allison, D. G., & Sattenstall, M. A. (2007). The influence of green fluorescent protein incorporation on bacterial physiology: a note of caution. Journal of applied microbiology, 103(2), 318-324.

https://doi.org/10.1111/j.1365-2672.2006.03243.x

Baban, C. K., Cronin, M., O'Hanlon, D., O'Sullivan, G. C., & Tangney, M. (2010). Bacteria as vectors for gene therapy of cancer. Bioengineered bugs, 1(6), 385-394.

https://doi.org/10.4161/bbug.1.6.13146

Bugrysheva, J. V., Lascols, C., Sue, D., & Weigel, L. M. (2016). Rapid antimicrobial susceptibility testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by use of laser light scattering technology. Journal of Clinical Microbiology, 54(6), 1462-1471.

https://doi.org/10.1128/JCM.03251-15

Campbell, J. (2010). High‐throughput assessment of bacterial growth inhibition by optical density measurements. Current protocols in chemical biology, 2(4), 195-208.

https://doi.org/10.1002/9780470559277.ch100115

Cann, S. H., Van Netten, J. P., & Van Netten, C. (2003). Dr William Coley and tumour regression: a place in history or in the future. Postgraduate medical journal, 79(938), 672-680.

Carlson, R. D., Flickinger, J. C., Jr, & Snook, A. E. (2020). Talkin' Toxins: From Coley's to Modern Cancer Immunotherapy. Toxins, 12(4), 241.

https://doi.org/10.3390/toxins12040241

Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173(1), 33-38.

https://doi.org/10.1016/0378-1119(95)00685-0

Dave, K., Gelman, H., Thu, C. T. H., Guin, D., & Gruebele, M. (2016). The effect of fluorescent protein tags on phosphoglycerate kinase stability is nonadditive. The Journal of Physical Chemistry B, 120(11), 2878-2885.

https://doi.org/10.1021/acs.jpcb.5b11915

Farkona, S., Diamandis, E. P., & Blasutig, I. M. (2016). Cancer immunotherapy: the beginning of the end of cancer?. BMC medicine, 14(1), 1-18.

https://doi.org/10.1186/s12916-016-0623-5

Forbes, N. S., Coffin, R. S., Deng, L., Evgin, L., Fiering, S., Giacalone, M., ... & Kaur, B. (2018). White paper on microbial anti-cancer therapy and prevention. Journal for immunotherapy of cancer, 6(1), 1-24.

https://doi.org/10.1186/s40425-018-0381-3

Gwee, C. P., Khoo, C. H., Yeap, S. K., Tan, G. C., & Cheah, Y. K. (2019). Targeted inactivation of Salmonella Agona metabolic genes by group II introns and in vivo assessment of pathogenicity and anti-tumour activity in mouse model. PeerJ, 7, e5989.

https://doi.org/10.7717/peerj.5989

Hong, H., Jung, J., & Park, W. (2014). Plasmid-encoded tetracycline efflux pump protein alters bacterial stress responses and ecological fitness of Acinetobacter oleivorans. PLoS One, 9(9), e107716.

https://doi.org/10.1371/journal.pone.0107716

Idelevich, E. A., Hoy, M., Görlich, D., Knaack, D., Grünastel, B., Peters, G., ... & Becker, K. (2017). Rapid phenotypic detection of microbial resistance in Gram-positive bacteria by a real-time laser scattering method. Frontiers in microbiology, 8, 1064.

https://doi.org/10.3389/fmicb.2017.01064

Jessy, T. (2011). Immunity over inability: The spontaneous regression of cancer. Journal of natural science, biology, and medicine, 2(1), 43.

https://doi.org/10.4103/0976-9668.82318

Khoo, C. H., Cheah, Y. K., Lee, L. H., Sim, J. H., Salleh, N. A., Sidik, S. M., ... & Sukardi, S. (2009). Virulotyping of Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry meat in Malaysia using multiplex-PCR. Antonie van Leeuwenhoek, 96(4), 441.

https://doi.org/10.1007/s10482-009-9358-z

Khoo, C. H., Sim, J. H., Salleh, N. A., & Cheah, Y. K. (2015). Pathogenicity and phenotypic analysis of sopB, sopD and pipD virulence factors in Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona. Antonie Van Leeuwenhoek, 107(1), 23-37.

https://doi.org/10.1007/s10482-014-0300-7

Kwon, S. Y., & Min, J. J. (2014). Genetically engineered Salmonella typhimurium for targeted cancer therapy. In Gene Therapy of Cancer (pp. 443-452). Academic Press.

https://doi.org/10.1016/B978-0-12-394295-1.00030-5

Lee, C. H., Lin, S. T., Liu, J. J., Chang, W. W., Hsieh, J. L., & Wang, W. K. (2014). Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Therapy, 21(3), 309-316.

https://doi.org/10.1038/gt.2013.86

Leschner, S., & Weiss, S. (2010). Salmonella-allies in the fight against cancer. Journal of molecular medicine, 88(8), 763-773.

https://doi.org/10.1007/s00109-010-0636-z

Liang, K., Liu, Q., Li, P., Luo, H., Wang, H., & Kong, Q. (2019). Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer letters, 448, 168-181.

https://doi.org/10.1016/j.canlet.2019.01.037

Ma, L., Zhang, G., & Doyle, M. P. (2011). Green fluorescent protein labeling of Listeria, Salmonella, and Escherichia coli O157: H7 for safety-related studies. PLoS One, 6(4), e18083.

https://doi.org/10.1371/journal.pone.0018083

McCarthy E. F. (2006). The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. The Iowa orthopaedic journal, 26, 154-158.

Mi, J., Sydow, A., Schempp, F., Becher, D., Schewe, H., Schrader, J., & Buchhaupt, M. (2016). Investigation of plasmid-induced growth defect in Pseudomonas putida. Journal of biotechnology, 231, 167-173.

https://doi.org/10.1016/j.jbiotec.2016.06.001

Momiyama, M., Zhao, M., Kimura, H., Tran, B., Chishima, T., Bouvet, M., ... & Hoffman, R. M. (2012). Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle, 11(3), 628-632.

https://doi.org/10.4161/cc.11.3.19116

Morrissey, D., O'Sullivan, G. C., & Tangney, M. (2010). Tumour targeting with systemically administered bacteria. Current gene therapy, 10(1), 3-14.

https://doi.org/10.2174/156652310790945575

Murakami, T., Hiroshima, Y., Zhao, M., Zhang, Y., Chishima, T., Tanaka, K., ... & Hoffman, R. M. (2015). Therapeutic efficacy of tumor-targeting Salmonella typhimurium A1-R on human colorectal cancer liver metastasis in orthotopic nude-mouse models. Oncotarget, 6(31), 31368.

https://doi.org/10.18632/oncotarget.5187

Perry, L. M., Hoerger, M., Seibert, K., Gerhart, J. I., O'Mahony, S., & Duberstein, P. R. (2019). Financial strain and physical and emotional quality of life in breast cancer. Journal of pain and symptom management, 58(3), 454-459.

https://doi.org/10.1016/j.jpainsymman.2019.05.011

Phillips, G. J. (2001). Green fluorescent protein-a bright idea for the study of bacterial protein localization. FEMS microbiology letters, 204(1), 9-18.

https://doi.org/10.1016/S0378-1097(01)00358-5

Rang, C., Galen, J. E., Kaper, J. B., & Chao, L. (2003). Fitness cost of the green fluorescent protein in gastrointestinal bacteria. Canadian journal of microbiology, 49(9), 531-537.

https://doi.org/10.1139/w03-072

Salleh, N. A., Rusul, G., Hassan, Z., Reezal, A., Isa, S. H., Nishibuchi, M., & Radu, S. (2003). Incidence of Salmonella spp. in raw vegetables in Selangor, Malaysia. Food Control, 14(7), 475-479.

https://doi.org/10.1016/S0956-7135(02)00105-6

Schuster, D. J., Dykstra, J. A., Riedl, M. S., Kitto, K. F., Belur, L. R., McIvor, R. S., ... & Vulchanova, L. (2014). Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Frontiers in neuroanatomy, 8, 42.

https://doi.org/10.3389/fnana.2014.00042

Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., ... & Tao, N. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics 7(7), 1795.

https://doi.org/10.7150/thno.19217

Uchugonova, A., Zhang, Y., Salz, R., Liu, F., Suetsugu, A., Zhang, L., ... & Zhao, M. (2015). Imaging the different mechanisms of prostate cancer cell-killing by tumor-targeting Salmonella typhimurium A1-R. Anticancer research, 35(10), 5225-5229.

Wall, D. M., Srikanth, C. V., & McCormick, B. A. (2010). Targeting tumors with salmonella Typhimurium-potential for therapy. Oncotarget, 1(8), 721.

https://doi.org/10.18632/oncotarget.206

Wang, C. Z., Kazmierczak, R. A., & Eisenstark, A. (2016). Strains, mechanism, and perspective: Salmonella-based cancer therapy. International journal of microbiology, 2016.

https://doi.org/10.1155/2016/5678702

World Health Organization Agency for Research on Cancer (IARC). (2018). GLOBOCAN 2018: estimated cancer incidence, mortality and prevalence worldwide in 2018. Retrieved from https://gco.iarc.fr/today/data/factsheets/populations/458-malaysia-fact-sheets.pdf

Yong, A. Y., Shabahang, S., Timiryasova, T. M., Zhang, Q., Beltz, R., Gentschev, I., ... & Szalay, A. A. (2004). Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature biotechnology, 22(3), 313-320.

https://doi.org/10.1038/nbt937

Zhao, M., Yang, M., Li, X. M., Jiang, P., Baranov, E., Li, S., ... & Hoffman, R. M. (2005). Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proceedings of the National Academy of Sciences, 102(3), 755-760.

https://doi.org/10.1073/pnas.0408422102

Zheng, J. H., & Min, J. J. (2016). Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam medical journal, 52(3), 173.

https://doi.org/10.4068/cmj.2016.52.3.173

Zhao, M., Yang, M., Ma, H., Li, X., Tan, X., Li, S., ... & Hoffman, R. M. (2006). Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer research, 66(15), 7647-7652.

https://doi.org/10.1158/0008-5472.CAN-06-0716

Zia, U.N.T.N., Ng, E.S.N.A., Sidik, M.A., Idris, M.F.M., Khoo, C.H., Sukardi, S., … & Cheah, Y.K. (in press). Tumour Growth Inhibition and Systemic Responses of ΔsopBΔsopDΔpipD Disrupted Salmonella Agona and Salmonella Typhimurium in Mice. Malaysian Journal of Medicine and Health Sciences.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Ubaidah Naim Taraq Naem Zia, Deepah Samynathan, Hasni Idayu Saidi, Gayathri Thevi Selvarajah, Yoke Kqueen Cheah