Bacterial Endophytes: A Reservoir of Bioactive Anti-Microbial Compounds
PDF

Keywords

Bacterial endophytes
Bioactive compounds

How to Cite

Rafi, M. I., & Cheah, Y. K. (2018). Bacterial Endophytes: A Reservoir of Bioactive Anti-Microbial Compounds. Life Sciences, Medicine and Biomedicine, 2(1). https://doi.org/10.28916/lsmb.2.1.2018.8

Abstract

Bacterial endophytes are found on all types of plants and is a potential source of bioactive compounds which can be utilized to fight against multi-resistant pathogens and could be further develop into new leads for antibiotic development. However, the research done on the bacterial endophytes is relatively new and has potential to grow as it is theorized that each plant has one or more bacterial endophytes inhabiting them. This review aims to review the studies that have been done previously and give new insights on the latest trends in this field of research.

https://doi.org/10.28916/lsmb.2.1.2018.8
PDF

References

Aravamuthan N., Kumar, G., Karthik L., & Bhaskara Rao K.V (2010). In vitro antagonistic activity of soil actinobacteria against multi drug resistant bacteria. Pharmacologyonline 2: 507-51

Arora N.K., Kang S.C., & Maheshwari D.K. (2001). Isolation of siderophore-producing strains of Rhizobium melitoli and their biocontrol potential against Marcrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81, 673-677

Arunachalam K. D., Arun L. B., Annamalai S. K., & Arunachalam A. M. (2015). Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.International Journal of Nanomedicine, 10, 31-41.

https://doi.org/10.2147/IJN.S71182

Bérdy J. (2012). Thoughts and facts about antibiotics: where we are now and where we are heading. The Journal of Antibiotics, 65(8), 385-95. https://doi.org/10.1038/ja.2012.27

https://doi.org/10.1038/ja.2012.27

Bérdy J. (2005). Bioactive microbial metabolites.Journal of Antibiotics,58(1), 1-26.

https://doi.org/10.1038/ja.2005.1

Brader G.C., Mitter S.,Trognitz B.F., & Sessitsch A. (2014). Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30-37.

https://doi.org/10.1016/j.copbio.2013.09.012

Bhoonobtong A., Sawadsitang S., Sodngam S., & Mongkolthanaruk W. (2012). Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents production. International Conference on Biological and Life Sciences, 40, 6-11

Casella T.M., Eparvier Véronique, Mandavid Hugues, Bendelac Audrey, Odonne, Guillaume Dayan, Laura Duplais, Christophe Espindola, Laila S., Stien Didier. (2013). Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry, ISSN: 1873-3700, Vol: 96, Page: 370-7

https://doi.org/10.1016/j.phytochem.2013.10.004

Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, & Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675-2685

https://doi.org/10.1099/00221287-148-9-2675

Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J,Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Miller D, Hess WM, Condron M, & Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 234:183-190

https://doi.org/10.1016/S0378-1097(03)00426-9

Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M, Robison R, Porter H, & Jensen J (2006) Munumbicins E-4 and E-5: novel broad-spectrumantibiotics from Streptomyces NRRL3052. FEMS Microbiol Lett 255:296-300

https://doi.org/10.1111/j.1574-6968.2005.00080.x

Cragg G. M., Grothaus P. G., & Newman D. J. (2009). Impact of natural products on developing new anti-cancer agents. Chemical Reviews, 109(7), 3012-43. https://doi.org/10.1021/cr900019j

https://doi.org/10.1021/cr900019j

Davies J. (2006). Where have all the raises gone? Canadian Journal of Infectious Diseases and Medical Microbiology, 17(5), 287-290.

https://doi.org/10.1155/2006/707296

El-Deeb, Fayez B.K. & Gherbawy Y. (2013). Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. Journal of Plant Interactions, 8(1), 56-64.

https://doi.org/10.1080/17429145.2012.680077

Ezra D., Castillo U.F., Strobel G.A., Hess W.M., Porter H., Jensen J.B., Condron M.A.M., Teplow D.B., Sears J., Maranta M., Hunter M., Weber B., & Yaver D. (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785-793

https://doi.org/10.1099/mic.0.26645-0

Guan S., Suttler I., Lin W., Guo D., & Grabley S. (2005) p- Aminoacetophenonic acids produced by a mangrove endophyte: Streptomyces griseus subsp. J Nat Prod 68:1198-1200

https://doi.org/10.1021/np0500777

Hallman J., Quadt-Hallman A., Mahaffee W.F., & Kloepper J.W. (1997). Bacterial endophytes in agriculture crops. Canadian Journal of Microbiology, 43, 895-914.

https://doi.org/10.1139/m97-131

Hameeda B., Harini G., Rupela O.P., Wani S.P., & Reddy G. (2008). Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiology Research, 163, 234-242.

https://doi.org/10.1016/j.micres.2006.05.009

Hallmann J., & Berg G.. (2006). Spectrum and population dynamics of bacterial root endophytes in microbial root endophytes. Soil Biology, 9, 15-31.

https://doi.org/10.1007/3-540-33526-9_2

Hardoim P.R., van Overbeek L.S., & van Elsas J.D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trend in Microbiology, 16(10), 463-471.

https://doi.org/10.1016/j.tim.2008.07.008

Hiroshi N. (2001). Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Seminars in Cell & Developmental Biology, Volume 12, Issue 3,June 2001, Pages 215-223

https://doi.org/10.1006/scdb.2000.0247

Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., & Gordon J.I. (2001). Molecular analysis of commensal host-microbial relationships in the intestine. Science, 291, 881-884

https://doi.org/10.1126/science.291.5505.881

Igarashi Y. (2004) Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica 18:63-66

https://doi.org/10.3209/saj.18_63

Jenke-Kodama H., Müller R., & Dittmann E. (2008). Evolutionary mechanisms underlying secondary metabolite diversity. In F. Petersen & R. Amstutz (Eds.), Natural Compounds as Drugs Volume I (pp. 119-140). Basel: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8117-2_3

https://doi.org/10.1007/978-3-7643-8117-2_3

Jinfeng, E. C., Mohamad Rafi, M. I., Chai Hoon, K., Kok Lian, H., & Yoke Kqueen, C. (2017). Analysis of chemical constituents, antimicrobial and anticancer activities of dichloromethane extracts of Sordariomycetes sp. endophytic fungi isolated from Strobilanthes crispus. World Journal of Microbiology and Biotechnology, 33(1).

https://doi.org/10.1007/s11274-016-2175-4

Jothy S.L., Zakaria Z., Chen Y., Lau Y. L., Latha L. Y., Shin L. N., & Sasidharan S. (2011). Bioassay-directed isolation of active compounds with antiyeast activity from a Cassia fistula seed extract. Molecules (Basel, Switzerland), 16(9), 7583-92.

https://doi.org/10.3390/molecules16097583

Kang C., & Song J. (2013). Antimicrobial resistance in asia : Current Epidemiology and Clinical Implications, 45(1), 22-31.

https://doi.org/10.3947/ic.2013.45.1.22

Kim S. H., Song J. H., ChungD. R., Thamlikitkul V., Yang Y., Wang H., … Peck K. R. (2012). Changing trends in antimicrobial resistance and serotypes of Streptococcus pneumoniae isolates in Asian countries: An asian network for surveillance of resistant pathogens (ANSORP) study. Antimicrobial Agents and Chemotherapy, 56(3), 1418-1426.

https://doi.org/10.1128/AAC.05658-11

Kenneth S.M., Walmsley M.B., & Adrian R.W. (2002) Microbial and viral drug resistance mechanisms. Trends in Microbiology 10:S8-S14

https://doi.org/10.1016/S0966-842X(02)02429-0

Kuklinsky-Sobral J., Araujo W.L., Mendes R., Geraldi I.O., Pizzirani-Kleiner A.A., & Azevedo J.L. (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6, 1244-1251

https://doi.org/10.1111/j.1462-2920.2004.00658.x

Li J., Lu C.H., & Shen Y.M. (2010) Macrolides of the bafilomycin family produced by Streptomyces sp. CS. J Antibiot.

https://doi.org/10.1038/ja.2010.95

Lodewyckx C., Vangronsveld J., Porteous F., Moore E. R. B., Taghavi S., Mezgeay M., & der Lelie D. van. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21(6), 583-606.

https://doi.org/10.1080/0735-260291044377

Lu C.H. & Shen Y.M. (2003) A new macrolide antibiotics with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J Antibiot 56:415-418

https://doi.org/10.7164/antibiotics.56.415

Lu C.H., & Shen Y.M. (2004) Two new macrolides produced by Streptomyces sp. CS. J Antibiot 57:597-600

https://doi.org/10.7164/antibiotics.57.597

Marx J. (2004). The roots of plant-microbe collaborations. Science, 304, 234-236.

https://doi.org/10.1126/science.304.5668.234

McGann P., Snesrud E., Maybank R., Corey B., Ong A. C., Clifford R., … Schaecher K. E. (2016). Escherichia coli harboring mcr-1 and bla CTX-M on a novel IncF plasmid: First report of mcr-1 in the USA. Antimicrobial Agents and Chemotherapy, 60(May), AAC.01103-16.

https://doi.org/10.1128/AAC.01103-16

Miller C. M., Miller R. V., Garton-Kenny D., Redgrave B., Sears J., Condron M. M., … Strobel G. A. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84(6), 937-944.

https://doi.org/10.1046/j.1365-2672.1998.00415.x

Ministry of Health. (2015) National surveillance of antibiotic resistance (NSAR) 2015. Retrieved fromhttp://www.imr.gov.my/images/uploads/NSAR/NSAR_2015/edited_251616_NSAR_Antibiotic_Resistance_Surveillance_data_2015.pdf.

Neher O.T., Johnston M. R., Zidack N. K., & Jacobsen B. J. (2009). Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biological Control, 48(2), 140-146.

https://doi.org/10.1016/j.biocontrol.2008.08.012

Nikaido X.-Z. L.& H. (2014). Efflux-mediated drug resistance in bacteria: an update. Drugs.

Pullen C., Schmitz P., Meurer K., Bamberg D.D., Lohmann S., Franc S.D.C., Groth I., Schlegel B., Möllmann U., Gollmick F., Gräfe U., & Leistner E. (2002) New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216:162-167

https://doi.org/10.1007/s00425-002-0874-6

Rosenblueth M., & Martínez-Romero E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827-837.

https://doi.org/10.1094/MPMI-19-0827

Sansinenea E., & Ortiz A. (2011). Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33(8), 1523-1538.

https://doi.org/10.1007/s10529-011-0617-5

Schulz B., & Boyle C. (2006). What are endophytes? Microbial Root Endophytes, 9, 367.

https://doi.org/10.1007/3-540-33526-9

Song J.H., Jung S.I, Ko K.S., Kim N.Y.,Son J.S.,Chang H.H,Ki H.K, Oh W.S., Suh J.Y.,Peck K.R., Lee N.Y., Yang Y., Lu Q.,Chongthaleong A.,Chiu C.H., M. K, A. K., & Parasakthi N., Van P.H., Carlos C.,So T., Keung T. Ng, & A. S. (2004). High prevalence of antimicrobial resistance among clinical Streptococcus pneumoniae isolates in asia (an ANSORP study). Clinical Infectious Diseases, 48(6), 333-336.

https://doi.org/10.1128/AAC.48.6.2101-2107.2004

Strobel G., & Daisy B. (2003). Bioprospecting for microbial endophytes and their natural product. Microbiology and Molecular Biology Reviews, 67, 491-502

https://doi.org/10.1128/MMBR.67.4.491-502.2003

Sun L., Lu Z., Bie X., Lu F. & Yang S.. (2006). Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259-1266.

https://doi.org/10.1007/s11274-006-9170-0

Sunkar S., & Valli Nachiyar C. (2013). Isolation and characterization of an endophytic bacterium from Brassica oleracea with potential enzyme and antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 183-187.

Supong K., Thawai C., Choowong W., Kittiwongwattana C., Thanaboripat D., Laosinwattan C., … Pittayakhajonwut P. (2016). Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.). Research in Microbiology, 167(4), 290-298.

https://doi.org/10.1016/j.resmic.2016.01.004

Torumkuney D., Chaiwarith R., Reechaipichitkul W., Malatham K., Chareonphaibul V., Rodrigues C., … Morrissey I. (2016). Results from the survey of antibiotic resistance (SOAR) 2012-14 in Thailand, India, South Korea and Singapore. Journal of Antimicrobial Chemotherapy, 71, i3-i19.

https://doi.org/10.1093/jac/dkw073

Van Overbeek L., & van Elsas J.D. (2008). Effects of plant genotypes and growth stage on the structure of bacterial communities associated with potato (Solanumtuberosum L.). FEMS Microbiology Ecology, 64, 283-296.

https://doi.org/10.1111/j.1574-6941.2008.00469.x

Venugopalan A., & Srivastava S. (2015). Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 33(6), 873-887.

https://doi.org/10.1016/j.biotechadv.2015.07.004

Vining C.Leo.(1990). Functions of Secondary Metabolites.Annu.Rev.Microbiol.44:395-427

https://doi.org/10.1146/annurev.mi.44.100190.002143

Webster's Revised Unabridged Dictionary (1913). "Natural product". Free Online Dictionary and C. & G. Merriam Co. "All natural". Nature Chemical Biology. 3 (7): 351. July 2007.

https://doi.org/10.1038/nchembio0707-351

Yazaki K., Sasaki K., & Tsurumaru Y. (2009). Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry, 70(15-16), 1739-1745.

https://doi.org/10.1016/j.phytochem.2009.08.023

Zhao P.J., Fan L.M., Li G.H., Zhu N., & Shen Y.M. (2005) Antibacterial and antitumor macrolides from Streptomyces sp. Ls9131. Arch Pharm Res 28:1228-1232

https://doi.org/10.1007/BF02978203

Zhu, D., Wang, J., Zeng, Q., Zhang, Z., & Yan, R. (2010). A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. Journal of Applied Microbiology, 109(4), 1469-1478.

https://doi.org/10.1111/j.1365-2672.2010.04777.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2018 Array