Antimicrobial effect of coconut oil on Staphylococcus aureus: an implication of Staphylococcus epidermidis induced fermentation
PDF

Keywords

Coconut oil
medium-chain fatty acids
skin commensal bacteria
Staphylococcus aureus
Staphylococcus epidermidis

How to Cite

Mahaklan, L., Pratuangdejkul, J. ., & Satitpatipan, V. (2022). Antimicrobial effect of coconut oil on Staphylococcus aureus: an implication of Staphylococcus epidermidis induced fermentation. Life Sciences, Medicine and Biomedicine, 6(1). https://doi.org/10.28916/lsmb.6.1.2022.100

Abstract

Staphylococcus epidermidis is a commensal bacterium of human skin. S. epidermidis possesses lipolytic activity to digest skin surface lipids into the smallest unit of fatty acids (FAs). Most FAs hold antimicrobial properties essential for protecting skin from invading microorganisms. In this study, we were interested in virgin coconut oil (VCO), the source of several medium-chain fatty acids (MCFAs) such as lauric acid and caprylic acid. Those MCFAs products demonstrated remarkable antibacterial activity. Our results showed that crude supernatant from the culture medium of S. epidermidis with VCO fermentation exhibited the growth inhibition effect on Staphylococcus aureus. This bacterium causes a wide range of skin diseases. A co-culture of S. epidermidis and S. aureus in a rich medium with 2.5% (v/v) VCO significantly reduced the growth of S. aureus compared to those without VCO (p-value <0.05). Moreover, time-kill assays indicated that the supernatant from the culture medium of S. epidermidis with VCO fermentation showed an efficient antimicrobial activity against S. aureus after 18 hours of incubation. Our results concluded that the culture of S. epidermidis with VCO plausibly induced fermentation of natural lipid sources aiming the production of MCFAs with antibacterial activity, particularly suppression of skin pathogen S. aureus growth. The skin commensal bacterium S. epidermidis might help produce MCFAs from skin products containing VCO and make more benefits for skin infection protection.

https://doi.org/10.28916/lsmb.6.1.2022.100
PDF

References

Asada, Y. (1968). Lipolytic activity of resident flora of the skin: some observations on lipase activity of Corynebacterium acnes and Staphylococcus epidermidis compared with Staphylococcus aureus. Skin research, 10(5), 585-593.

ASTM. (2016). Standard Guide for Assessment of Antimicrobial Activity Using a Time-Kill Procedure; ASTM (E2315-03R08). In. West Conshohocken, PA: ASTM International.

Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nat Rev Microbiol, 16(3), 143-155.

https://doi.org/10.1038/nrmicro.2017.157

Cogen, A. L., Nizet, V., & Gallo, R. L. (2008). Skin microbiota: a source of disease or defence? Br J Dermatol, 158(3), 442-455.

https://doi.org/10.1111/j.1365-2133.2008.08437.x

Finegold, S. M., & Sweeney, E. E. (1961). New selective and differential medium for coagulase-positive staphlococci allowing rapid growth and strain differentiation. Journal of bacteriology, 81(4), 636-641.

https://doi.org/10.1128/jb.81.4.636-641.1961

Kali, A. (2015). Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: A brief review. Pharmacogn Rev, 9(17), 29-34.

https://doi.org/10.4103/0973-7847.156329

Khoramnia, A., Ebrahimpour, A., Ghanbari, R., Ajdari, Z., & Lai, O. M. (2013). Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum. Biomed Res Int, 2013, 954542.

https://doi.org/10.1155/2013/954542

Liu, G. Y. (2009). Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res, 65(5 Pt 2), 71R-77R.

https://doi.org/10.1203/PDR.0b013e31819dc44d

Moore, E. M., Wagner, C., & Komarnytsky, S. (2020). The Enigma of Bioactivity and Toxicity of Botanical Oils for Skin Care. Front Pharmacol, 11, 785.

https://doi.org/10.3389/fphar.2020.00785

Mrochen, D. M., Fernandes de Oliveira, L. M., Raafat, D., & Holtfreter, S. (2020). Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci, 21(19).

https://doi.org/10.3390/ijms21197061

Wang, Y., Kao, M. S., Yu, J., Huang, S., Marito, S., Gallo, R. L., & Huang, C. M. (2016). A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. Int J Mol Sci, 17(11).

https://doi.org/10.3390/ijms17111870

Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., Two, A., Gallo, R. L., & Huang, C. M. (2014). Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol, 98(1), 411-424.

https://doi.org/10.1007/s00253-013-5394-8

Watanabe, T., Yamamoto, Y., Miura, M., Konno, H., Yano, S., & Nonomura, Y. (2019). Systematic Analysis of Selective Bactericidal Activity of Fatty Acids against Staphylococcus aureus with Minimum Inhibitory Concentration and Minimum Bactericidal Concentration. J Oleo Sci, 68(3), 291-296.

https://doi.org/10.5650/jos.ess18220

Weber, N., Biehler, K., Schwabe, K., Haarhaus, B., Quirin, K. W., Frank, U., Schempp, C. M., & Wolfle, U. (2019). Hop Extract Acts as an Antioxidant with Antimicrobial Effects against Propionibacterium acnes and Staphylococcus aureus. Molecules, 24(2).

https://doi.org/10.3390/molecules24020223

Widianingrum, D. C., Noviandi, C. T., & Salasia, S. I. O. (2019). Antibacterial and immunomodulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon, 5(10), e02612.

https://doi.org/10.1016/j.heliyon.2019.e02612

Zolkiewicz, J., Marzec, A., Ruszczynski, M., & Feleszko, W. (2020). Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients, 12(8).

https://doi.org/10.3390/nu12082189

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Array