Abstract
Artemisinin is a powerful drug that has been combined with other antimalarial drugs to combat malaria and it has been crucial to recent achievements in reducing malaria cases. However, the emergence of Plasmodium falciparum resistance against artemisinin has become a serious problem in malaria treatment. Our previous studies reported that artemisinin alkalinised the digestive vacuole of P. falciparum similarly to concanamycin A. Concanamycin A is a specific inhibitor of V-type H+-ATPase, a proton pump located on the membrane of the digestive vacuole. A study also showed that a low concentration of concanamycin A is required to kill 50% of the parasites. Therefore, this study aimed to determine the interaction of artemisinin with concanamycin A by using the isobologram analysis of effects on parasite growth. The antimalarial activity (IC50) of artemisinin and concanamycin A was evaluated by using a malarial SBYR Green I fluorescence-based (MSF) assay prior to isobologram analysis. Based on their IC50 values, six different combination solutions of the drugs were assigned and used in the isobologram analysis. The IC50 of artemisinin and concanamycin A was 13 ± 2.52 nM and 7 ± 1.15 nM, respectively. The interaction of artemisinin and concanamycin A was found to be synergistic, indicating that the combination of these drugs could kill the parasites more effectively. This study suggests that artemisinin and concanamycin A combination can be a new candidate in artemisinin-based combination therapies.
References
Abu Bakar, N., Klonis, N., Hanssen, E., Chan, C., & Tilley, L. (2010). Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. Journal of Cell Science, 123(3), 441-450
https://doi.org/10.1242/jcs.061499
Ahmed, N. (2014). Cultivation of parasites. Tropical Parasitology, 4(2), 80.
https://doi.org/10.4103/2229-5070.138534
Ali, S., & Mahmood, A. (2017). Microbial and viral contamination of animal and stem cell cultures: common contaminants, detection and elimination. Journal of Stem Cell Research & Therapeutics, 2(5).
https://doi.org/10.15406/jsrt.2017.02.00078
Auparakkitanon, S., & Wilairat, P. (2006). Antimalarial activity of concanamycin a alone and in combination with pyronaridine. Southeast Asian Journal of Tropical Medicine and Public Health, 37(4), 619–621.
http://www.tm.mahidol.ac.th/seameo/2006_37_4/03-3797.pdf
Babamale, O. A., Opeyemi, O. A., Bukky, A. A., Musleem, A. I., Kelani, E.O., Okhian, B. J., & Abu-Bakar, N. (2020). Association between farming activities and Plasmodium falciparum transmission in rural communities in Nigeria. Malaysian Journal of Medical Sciences, 27(3):105-116.
https://doi.org/10.21315/mjms2020.27.3.11
Bakar, N. A. (2016). Non-heme (inorganic) iron (II) is a possible primary activator of artemisinin in Plasmodium falciparum-infected erythrocytes. Health and the Environmental Journal, 7(1), 25–42.
Bell, A. (2005). Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiology Letters, 253(2), 171–184.
https://doi.org/10.1016/j.femsle.2005.09.035
Bhisutthibhan, J., & Meshnick, S. R. (2001). Immunoprecipitation of [3H]dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies. Antimicrobial Agents and Chemotherapy 45(8), 2397-2399.
https://doi.org/10.1128/AAC.45.8.2397-2399.2001.
Centers for Disease Control and Prevention (CDC). (2021a). CDC - Malaria - malaria worldwide - impact of malaria. CDC.
https://www.cdc.gov/malaria/malaria_worldwide/impact.html
Centers for Disease Control and Prevention (CDC). (2021b). CDC - malaria - malaria worldwide - how can malaria cases and deaths be reduced? - vaccines. CDC.
https://www.cdc.gov/malaria/malaria_worldwide/reduction/vaccine.html
Chotivanich, K., Tripura, R., Das, D., Yi, P., Day, N. P. J., Pukrittayakamee, S., Chuor, C. M., Socheat, D., Dondorp, A. M., & White, N. J. (2014). Laboratory detection of artemisinin-resistant Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 58(6), 3157–3161.
https://doi.org/10.1128/AAC.01924-13
Eriksson, I., Öllinger, K., & Appelqvist, H. (2017). Analysis of lysosomal pH by flow cytometry using FITC-dextran loaded sells. In Öllinger, K. & Appelqvist, H (eds.), Lysosomes: methods and protocols (pp. 179-189). Springer New York.
https://doi.org/10.1007/978-1-4939-6934-0_11
Forgac, M. (2007). Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature Reviews Molecular Cell Biology, 8(11), 917–929.
https://doi.org/10.1038/nrm2272
Hastings, I. M., & Hodel, E. M. (2014). Pharmacological considerations in the design of anti-malarial drug combination therapies - Is matching half-lives enough? Malaria Journal, 13(1), 62.
https://doi.org/10.1186/1475-2875-13-62
Heller, L. E., & Roepe, P. D. (2019). Artemisinin-based antimalarial drug therapy: molecular pharmacology and evolving resistance. Tropical Medicine and Infectious Disease, 4(2), 89.
https://doi.org/10.3390/tropicalmed4020089
Ibrahim, N., Roslee, A., Azlan, M., & Abu-Bakar, N. (2020). Sub-lethal concentrations of artemisinin alter pH of the digestive vacuole of the malaria parasite, Plasmodium falciparum. Tropical Biomedicine, 37(1), 1–14.
Imwong, M., Dhorda, M., Myo Tun, K., Thu, A. M., Phyo, A. P., Proux, S., Suwannasin, K., Kunasol, C., Srisutham, S., Duanguppama, J., Vongpromek, R., Promnarate, C., Saejeng, A., Khantikul, N., Sugaram, R., Thanapongpichat, S., Sawangjaroen, N., Sutawong, K., Han, K. T., … White, N. J. (2020). Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. The Lancet Infectious Diseases, 20(12), 1470–1480.
https://doi.org/10.1016/S1473-3099(20)30228-0
Ja’afar, N. S. A., Nik Mat Zin, N. N. I., Mohamad, F. S., & Abu-Bakar, N. (2021). A polyphenol, pyrogallol changes the acidic pH of the digestive vacuole of Plasmodium falciparum. Life Sciences, Medicine and Biomedicine, 5(1), 82.
https://doi.org/10.28916/lsmb.5.1.2021.82
Jang, J. W., Kim, J. Y., Yoon, J., Yoon, S. Y., Cho, C. H., Han, E. T., An, S. S. A., & Lim, C. S. (2014). Flow cytometric enumeration of parasitaemia in cultures of Plasmodium falciparum stained with SYBR Green I and CD235A. The Scientific World Journal, 2014.
https://doi.org/10.1155/2014/536723
Kalkanidis, M., Klonis, N., Tiley, L., & Deady, L. W. (2002). Novel phenothiazine antimalarials: synthesis, antimalarial activity, and inhibition of the formation of β-haematin. Biochemical Pharmacology, 63, 833–842.
https://doi.org/10.1016/S0006-2952(01)00840-1
Klonis, N., Crespo-Ortiz, M. P., Bottova, I., Abu-Bakar, N., Kenny, S., Rosenthal, P. J., & Tilley, L. (2011). Artemisinin activity against Plasmodium falciparum requires haemoglobin uptake and digestion. Proceedings of the National Academy of Sciences, 108(28), 11405–11410.
https://doi.org/10.1073/pnas.1104063108
Laurens, M. B. (2020). RTS,S/AS01 vaccine (MosquirixTM): an overview. Human Vaccines & Immunotherapeutics, 16(3), 480–489.
https://doi.org/10.1080/21645515.2019.1669415
Li, W., Mo, W., Shen, D., Sun, L., Wang, J., Lu, S., Gitschier, J. M., & Zhou, B. (2005). Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genetics, 1(3), e36.
https://10.1371/journal.pgen.0010036.
Matthews, H., Deakin, J., Rajab, M., Idris-Usman, M., & Nirmalan, N. J. (2017). Investigating antimalarial drug interactions of emetine dihydrochloride hydrate using CalcuSyn-based interactivity calculations. PLOS ONE, 12(3), e0173303.
https://doi.org/10.1371/journal.pone.0173303
Miller, L. H., Ackerman, H. C., Su, X., & Wellems, T. E. (2013). Malaria biology and disease pathogenesis: insights for new treatments. Nature Medicine, 19(2), 156–167.
https://doi.org/10.1038/nm.3073
Ministry of Health. (2020). Kenyataan Akhbar KPK 25 April 2020 – Sambutan Hari Malaria Peringkat Kebangsaan Tahun 2020 – From the Desk of the Director-General of Health Malaysia.
Mohd Yasin Z. N., Zakaria, M. A., Nik Mat Zin, N. N. I., Ibrahim, N., Mohamad, F. S., Wan Nur Syuhaila, M. D., Mohd Dasuki, S., & Abu-Bakar N. (2020). Biological activities and GCMS analysis of the methanolic extract of Christia vespertilionis (L.F.) Bakh. F. leaves. Asian Journal of Medicine and Biomedicine, 4(2), 78-88.
https://doi.org/10.37231/ajmb.2020.4.1.335
Mohd-Zamri, N. H., Mat-Desa, N. W., & Abu-Bakar, N. (2017). Sensitivity of artemisinin towards different stages of development of the malaria parasite, Plasmodium falciparum. Tropical Biomedicine, 34(4), 759–769.
Nik Mat Zin, N. N. I., Mohamad, M. N., Roslan, K., Sazeli, A. W., Abdul Moin, N. I., Alias, A., Zakaria, Y., & Abu-Bakar, N. (2020). In vitro antimalarial and toxicological activities of Quercus infectoria (Olivier) gall extracts. Malaysian Journal of Medical Sciences, 27(4), 36–50.
https://doi.org/10.21315/mjms2020.27.4.4
Páli, T. (2017). Animation of the rotary mechanism of the vacuolar proton-ATPase (V-ATPase – a protein complex) - YouTube. In Youtube.
https://www.youtube.com/watch?v=A2PdDLJWiMY
Pua, J. Y., Abu Bakar, N., Nik Kamarudin, N. A. A., Ghazali, S. Z., & Khairul, M. F. M. (2020). Long cryopreserved lab-adapted Plasmodium falciparum increases resistance to chloroquine but not its susceptibility. Life Science, Medicine and Biomedicine, 4(9).
https://doi.org/10.28916/lsmb.4.9.2020.66
Rebelo, M., Tempera, C., Fernandes, J. F., Grobusch, M. P., & Hänscheid, T. (2015). Assessing anti-malarial drug effects ex vivo using the haemozoin detection assay. Malaria Journal, 14(1), 140.
https://doi.org/10.1186/s12936-015-0657-8
Roell, K. R., Reif, D. M., & Motsinger-Reif, A. A. (2017). An introduction to terminology and methodology of chemical synergy-perspectives from across disciplines. Frontiers in Pharmacology, 8, 158.
https://doi.org/10.3389/FPHAR.2017.00158
Shafik, S. H., Cobbold, S. A., Barkat, K., Richards, S. N., Lancaster, N. S., Llinás, M., Hogg, S. J., Summers, R. L., McConville, M. J., & Martin, R. E. (2020). The natural function of the malaria parasite’s chloroquine resistance transporter. Nature Communications 2020 11:1, 11(1), 1–16.
https://doi.org/10.1038/s41467-020-17781-6
van Schalkwyk, D. A., Chan, X. W. A., Misiano, P., Gagliardi, S., Farina, C., & Saliba, K. J. (2010). Inhibition of Plasmodium falciparum pH regulation by small molecule indole derivatives results in rapid parasite death. Biochemical Pharmacology, 79(9), 1291–1299.
https://doi.org/10.1016/j.bcp.2009.12.025
Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M., & Nosten, F. H. (2017). Combating multidrug-resistant Plasmodium falciparum malaria. The FEBS Journal, 284(16), 2569–2578.
https://doi.org/10.1111/febs.14127
Vossen, M. G., Pferschy, S., Chiba, P., & Noedl, H. (2010). The Sybr Green I Malaria Drug Sensitivity Assay: Performance in low parasitemia samples. The American Journal of Tropical Medicine and Hygiene, 82(3), 398.
https://doi.org/10.4269/ajtmh.2010.09-0417
World Health Organization (WHO). (2021). Malaria. World Health Organization.
https://www.who.int/news-room/fact-sheets/detail/malaria
Wykes, M. N. (2013). Why haven’t we made an efficacious vaccine for malaria? EMBO Reports, 14(8), 661.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Array