Metabolic perturbations in methicillin-resistant Staphylococcus aureus induced by Psidium guajava ethanolic leaf extract
PDF

Keywords

Carbon utilization phenome
metabolic perturbation
methicillin-resistant Staphylococcus aureus
plant-derived antibacterial
sole carbon phenotype microarray

How to Cite

Manglicmot Yabes, A., & Orejas Ramos, M. A. (2023). Metabolic perturbations in methicillin-resistant Staphylococcus aureus induced by Psidium guajava ethanolic leaf extract. Life Sciences, Medicine and Biomedicine, 7(1). https://doi.org/10.28916/lsmb.7.1.2023.118

Abstract

Psidium guajava ethanolic leaf extract (PGele) showed good antibacterial activity against Staphylococcus aureus in various in vitro and in vivo studies. It was also reported to be efficacious, safe, and well-tolerated in a phase 1/11a clinical trial of the Psidium guajava ointment among volunteer patients with persistent Staphylococcus aureus nasal colonizers. However, its mechanism of antibacterial action is yet to be elucidated. Changes in bacterial metabolism can contribute to the susceptibility of the organism to antibiotics, thus screening for metabolic perturbations induced by PGele can give insight into its mechanism/s of antibacterial action. Minimum inhibitory concentration (MIC) of PGele against methicillin-resistant Staphylococcus aureus (MRSA) was determined using the agar dilution technique. The sole carbon utilization phenotype microarray was used to describe the metabolic perturbations. Psidium guajava ethanolic leaf extract showed antibacterial activity against MRSA with MIC at 1,250 µg/mL. The phenotypic profile of MRSA showed utilization of 51 carbon sources, however, when MRSA was treated with the plant extract at sub-MIC (625 µg /mL), the utilization of carbon sources belonging to carbohydrate group (51.43%), amino acid group (100%) and the group of esters, carboxylic acids and fatty acids (75%) were inhibited. The sub-MIC of PGele induced metabolic perturbations on carbon sources associated with Embden-Meyerhof-Parnas pathway (EMP), pentose phosphate pathway (PPP), and citric acid cycle (TCA) pathways of MRSA. This current study gave an insight into the mechanism of antibacterial action of the Psidium guajava ethanolic leaf extract, a promising plant-derived antibiotic.

https://doi.org/10.28916/lsmb.7.1.2023.118
PDF

References

Adwan, G., Abu-shanab, B., & Adwan, K. (2009). In vitro activity of certain drugs in combination with plant extracts against Staphylococcus aureus infections. African Journal of Biotechnology, 8(17).

Aligiannis, N., Kalpoutzakis, E., Mitaku, S., & Chinou, I. B. (2001). Composition and antimicrobial activity of the essential oils of two Origanum species. Journal of Agricultural and Food Chemistry, 49(9), 4168-4170.

https://doi.org/10.1021/jf001494m

Arya, V., Thakur, N., & Kashyap, C. P. (2012). Preliminary phytochemical analysis of the extracts of Psidium leaves. Journal of Pharmacognosy and Phytochemistry, 1(1), 01-05.

https://doi.org/10.5829/idosi.mejsr.2014.19.11.11415

Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. International Journal of Microbiology, 2013.

https://doi.org/10.1155/2013/746165

Bochner, B. R., Gadzinski, P., & Panomitros, E. (2001). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Research, 11(7), 1246-1255.

https://doi.org/10.1101/gr.186501

Bochner, B. R. (2003). New technologies to assess genotype–phenotype relationships. Nature Reviews Genetics, 4(4), 309-314.

http://dx.doi.org/10.1038/nrg1046

Bochner, B. R. (2008). Global phenotypic characterization of bacteria. FEMS Microbiology Reviews, 33(1), 191-205.

https://doi.org/10.1111/j.1574-6976.2008.00149.x

Brown, D. G., Lister, T., & May-Dracka, T. L. (2014). New natural products as new leads for antibacterial drug discovery. Bioorganic & Medicinal Chemistry Letters, 24(2), 413-418.

https://doi.org/10.1016/j.bmcl.2013.12.059

Carvalho, S. M., de Jong, A., Kloosterman, T. G., Kuipers, O. P., & Saraiva, L. M. (2017). The Staphylococcus aureus α-acetolactate synthase ALS confers resistance to nitrosative stress. Frontiers in Microbiology, 8, 1273.

https://doi.org/10.3389/fmicb.2017.01273

Cavinta, L., Sara, M.C. & Maramba, C,N. (2010). In vitro screening for the anti-bacterial activity of Psidium guajava L. (guava) and Anona muricata L. (guyabano). In Annual Accomplishment Report to the Philippine Council for Research and Development January 2009-March 2010.

Cockerill, F. R. (2012). CLSI Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 19087-11898.

Collins, F. M., & Lascelles, J. (1962). The effect of growth conditions on oxidative and dehydrogenase activity in Staphylococcus aureus. Microbiology, 29(3), 531-535.

https://doi.org/10.1099/00221287-29-3-531

David, B., Wolfender, J. L., & Dias, D. A. (2015). The pharmaceutical industry and natural products: historical status and new trends. Phytochemistry Reviews, 14, 299-315.

http://dx.doi.org/10.1007/s11101-014-9367-z

de Araújo, A. A., Soares, L. A. L., Ferreira, M. R. A., de Souza Neto, M. A., da Silva, G. R., de Araújo Jr, R. F., ... & de Melo, M. C. N. (2014). Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone–water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. Journal of Ethnopharmacology, 156, 88-96.

https://doi.org/10.1016/j.jep.2014.07.031

Díaz-de-Cerio, E., Verardo, V., Gómez-Caravaca, A. M., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2017). Health effects of Psidium guajava L. leaves: an overview of the last decade. International Journal of Molecular Sciences, 18(4), 897.

https://doi.org/10.3390/ijms18040897

Duarte, M. C. T., Figueira, G. M., Sartoratto, A., Rehder, V. L. G., & Delarmelina, C. (2005). Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology, 97(2), 305-311.

https://doi.org/10.1016/j.jep.2004.11.016

Fabry, W., Okemo, P. O., & Ansorg, R. (1998). Antibacterial activity of East African medicinal plants. Journal of Ethnopharmacology, 60(1), 79-84.

https://doi.org/10.1016/S0378-8741(97)00128-1

Garland, J. L. (1996). Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology and Biochemistry, 28(2), 213-221.

https://doi.org/10.1016/0038-0717(95)00112-3

Gonçalves, F. A., Andrade Neto, M., Bezerra, J. N., Macrae, A., Sousa, O. V. D., Fonteles-Filho, A. A., & Vieira, R. H. (2008). Antibacterial activity of GUAVA, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from Seabob shrimp, Xiphopenaeus kroyeri (Heller). Revista do Instituto de Medicina Tropical de São Paulo, 50, 11-15.

https://doi.org/10.1590/S0036-46652008000100003

Gutiérrez, R. M. P., Mitchell, S., & Solis, R. V. (2008). Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 117(1), 1-27.

https://doi.org/10.1016/j.jep.2008.01.025

Halsey, C. R., Lei, S., Wax, J. K., Lehman, M. K., Nuxoll, A. S., Steinke, L., ... & Fey, P. D. (2017). Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression. MBio, 8(1), e01434-16.

https://doi.org/10.1128/mBio.01434-16

Mailoa, M. N., Mahendradatta, M., Laga, A., & Djide, N. (2014). Antimicrobial activities of tannins extract from guava leaves (Psidium guajava L.) on pathogens microbial. International Journal of Scientific & Technology Research, 3(1), 236-241.

Manglicmot-Yabes, A., Villanueva S.Y.A.M. & Gloriani, N.G. (2020a). Optimized Tube Dilution Technique and Sole Carbon Utilization Assay for Anti-leptospiral In Vitro Screening of Plant Extracts. Pediatric Infectious Disease Society of the Philippines, 21(2), 3-12.

https://doi.org/10.56964/pidspj20202102002

Manglicmot-Yabes, A., Villanueva S.Y.A.M. & Gloriani, N.G. (2020b). Effect of PGele on the cell membrane integrity and carbon utilization phenome of Leptospira interrogans serovar Manilae strain K64. Technical Report submitted to UP Manila National Institutes of Health.

Manglicmot-Yabes, A., Villanueva S.Y.A.M. & Gloriani, N.G. (2020c). In vitro Evaluation of PGele against four dominant Leptospira serovars in the Philippines. Final Technical Report submitted to the Philippine Institute of Traditional and Alternative Health Care (PITAHC).

Maramba-Lazarte, C.C. (2021). A randomized, placebo-controlled phase 1/11a study to evaluate the safety, tolerability and efficacy of Psidium guava ointment in subjects colonized with Staphylococcus aureus. Final Technical Report submitted to the Philippine Institute of Traditional and Alternative Health Care (PITAHC).

Maramba-Lazarte, C.C., Cavinta, L.L. & Lacuna, A. (2016). In vitro and in vivo study of the antibacterial properties of Psidium guajava L (guava ) ointment. Technical Report submitted to the Philippine Council for Health Research and Development 2016.

Metwally, A. M., Omar, A. A., Harraz, F. M., & El Sohafy, S. M. (2010). Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacognosy Magazine, 6(23), 212.

https://doi.org/10.4103/0973-1296.66939

Miller, J. M., & Rhoden, D. L. (1991). Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. Journal of Clinical Microbiology, 29(6), 1143-1147.

https://doi.org/10.1128/jcm.29.6.1143-1147.1991

Naseer, S., Hussain, S., Naeem, N., Pervaiz, M., & Rahman, M. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4(1), 1-8.

https://doi.org/10.1186/s40816-018-0093-8

Oncho, D. A., Ejigu, M. C., & Urgessa, O. E. (2021). Phytochemical constituent and antimicrobial properties of guava extracts of east Hararghe of Oromia, Ethiopia. Clinical Phytoscience, 7(1), 1-10.

https://doi.org/10.1186/s40816-021-00268-2

Patel, H., Vashi, R. T., & Champaneri, V. A. (2019). Continuous Adsorption of Methylene Blue Dye from Aqueous Solution onto Guava Leaf Powder in Fixed Bed. Journal of Applicable Chemistry, 8(5), 2246-2254.

Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional diversity using sole-carbon-source utilization profiles–a critique. FEMS Microbiology Ecology, 42(1), 1-14.

https://doi.org/10.1111/j.1574-6941.2002.tb00990.x

Raj, A., Menon, V., & Sharma, N. (2020). Phytochemical screening, antimicrobial, antioxidant and cytotoxic potential of different extracts of Psidium guajava leaves. Vegetos, 33(4), 750-758.

https://doi.org/10.1007/s42535-020-00151-4

Research Institute for Tropical Medicine (RITM). (2022). Antimicrobial Resistance Surveillance Reference Laboratory Annual.

https://arsp.com.ph/publications/#

Sanches, N. R., Garcia Cortez, D. A., Schiavini, M. S., Nakamura, C. V., & Dias Filho, B. P. (2005). An evaluation of antibacterial activities of Psidium guajava (L.). Brazilian Archives of Biology and Technology, 48, 429-436.

https://doi.org/10.1590/S1516-89132005000300014

Strasters, K.C., Winkler, K.C. 1963. Carbohydrate metabolism of Staphylococcus aureus. Microbiology. 33(2):213-29.

https://doi.org/10.1099/00221287-33-2-213

Thenmozhi, S., & Rajan, S. (2015). GC-MS analysis of bioactive compounds in Psidium guajava leaves. Journal of Pharmacognosy and Phytochemistry, 3(5), 162-166.

Ukwueze, S. E., Osadebe, P. O., & Okoye, F. B. (2015). A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves. Natural Product Research, 29(18), 1728-1734.

https://doi.org/10.1080/14786419.2014.1003188

Vahjen, W., Munch, J. C., & Tebbe, C. C. (1995). Carbon source utilization of soil extracted microorganisms as a tool to detect the effects of soil supplemented with genetically engineered and non-engineered Corynebacterium glutamicum and a recombinant peptide at the community level. FEMS Microbiology Ecology, 18(4), 317-328.

Vitko, N. P., Grosser, M. R., Khatri, D., Lance, T. R., & Richardson, A. R. (2016). Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. MBio, 7(3), e00296-16.

https://doi.org/10.1128/mBio.00296-16

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Array