Abstract
Cockle shells of the Anadara granosa species consist of 95-99% aragonite form of calcium carbonate (CaCO3) crystals. Aragonites are known to be denser which allows it to be incorporated, resolved and replaced by bone tissues over time when used in bone tissue grafting. An injectable biomaterial-based bone filler with appropriate injectability and biological properties was formulated using powdered cockle shells in nanoscale (nCSP) and sodium alginate (Alg). Initial attempts in formulating the bone filler using alginate and citric acid as a setting agent in the composition of nCSP: Alg of 60: 40, 70: 30 and 80: 20 wt.% produced variable results in the bone filler characterization. Characterization study of nCSP-Alg bone filler with 70:30 wt.% compositions showed excellent injectability (p<0.05), viscosity (p<0.05) and anti-washout ability that was further evaluated through physicochemical analysis, morphology and biocompatibility studies. Scanning electron micrographs revealed plate-like nanocrystal deposits with micropores ranging between 1.5 – 7.4 μm. XRD and FTIR evaluation indicated the presences of peaks associated with aragonite form of CaCO3. Biocompatibility studies with MG63 osteoblast showed osteoconductivity of the bone fillers with excellent cell adherence, growth and subsequent mineralization of the matrices. In conclusion, nCSP-Alg biomaterial-based bone filler with 70:30 wt.% compositions shows promising use as a cost effective bone grafting material for clinical application in the field of bone tissue engineering.
References
Anil A, Sadasivan A, Koshi E. Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study. J Int Soc Prev Community Dent. 2020 Sep 28;10(5):634-642.
https://doi.org/10.4103/jispcd.JISPCD_263_20
Ansari S, de Wildt BWM, Vis MAM, de Korte CE, Ito K, Hofmann S, Yuana Y. Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals (Basel). 2021 Mar 24;14(4):289.
https://doi.org/10.3390/ph14040289
Barua, S., & Mitragotri, S. (2013). Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS nano, 7(11), 9558-9570.
https://doi.org/10.1021/nn403913k
Bharatham, H., Zakaria, M. Z. A. B., Perimal, E. K., Yusof, L. M., & Hamid, M. (2014). Mineral and physiochemical evaluation of Cockle shell (Anadara granosa) and other selected Molluscan shell as potential biomaterials. Sains Malaysiana, 43(7), 1023-1029.
Bohner, M., & Baroud, G. (2005). Injectability of calcium phosphate pastes. Biomaterials, 26(13), 1553-1563.
https://doi.org/10.1016/j.biomaterials.2004.05.010
Burguera, E. F., Xu, H. H., & Weir, M. D. (2006). Injectable and rapid‐setting calcium phosphate bone cement with dicalcium phosphate dihydrate. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(1), 126-134.
https://doi.org/10.1002/jbm.b.30403
Carey, L. E., Xu, H. H., Simon Jr, C. G., Takagi, S., & Chow, L. C. (2005). Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials, 26(24), 5002-5014.
https://doi.org/10.1016/j.biomaterials.2005.01.015
Fukui, Y., & Fujimoto, K. (2012). Bio-inspired nanoreactor based on a miniemulsion system to create organic–inorganic hybrid nanoparticles and nanofilms. Journal of Materials Chemistry, 22(8), 3493-3499.
https://doi.org/10.1039/C2JM14661D
Jian-Chih Chen, Jung-Chang Kung, Chih-Hsin Hsieh, Mei-Ju Hou, Chi-Jen Shih, Chun-Cheng Hung, "Mineralization and Osteoblast Cells Response of Nanograde Pearl Powders", Journal of Nanomaterials, vol. 2013, Article ID 752863, 7 pages, 2013.
https://doi.org/10.1155/2013/752863
Lin, Q., Lan, X., Li, Y., Yu, Y., Ni, Y., Lu, C., & Xu, Z. (2010). Anti-washout carboxymethyl chitosan modified tricalcium silicate bone cement: preparation, mechanical properties and in vitro bioactivity. Journal of Materials Science: Materials in Medicine, 21, 3065-3076.
https://doi.org/10.1007/s10856-010-4160-z
Mahmood, S. K., Zakaria, M. Z. A. B., Razak, I. S. B. A., Yusof, L. M., Jaji, A. Z., Tijani, I., & Hammadi, N. I. (2017). Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochemistry and biophysics reports, 10, 237-251.
https://doi.org/10.1016/j.bbrep.2017.04.008
Maulida, H. N., Hikmawati, D., & Budiatin, A. S. (2015). Injectable bone substitute paste based on hydroxyapatite, gelatin and streptomycin for spinal tuberculosis. Journal of Spine, 4, 82-89.
https://doi.org/10.4172/2165-7939.1000266
Mohamed, M., Rashidi, N. A., Yusup, S., Teong, L. K., Rashid, U., & Ali, R. M. (2012). Effects of experimental variables on conversion of cockle shell to calcium oxide using thermal gravimetric analysis. Journal of Cleaner Production, 37, 394-3
Ortiz, M., Escobar-Garcia, D. M., Álvarez-Pérez, M. A., Pozos-Guillén, A., Grandfils, C., & Flores, H. (2017). Evaluation of the osteoblast behavior to PGA textile functionalized with RGD as a scaffold for bone regeneration. Journal of Nanomaterials, 2017.
https://doi.org/10.1155/2017/4852190
Peter, M., Binulal, N. S., Soumya, S., Nair, S. V., Furuike, T., Tamura, H., & Jayakumar, R. (2010). Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers, 79(2), 284-289.
https://doi.org/10.1016/j.carbpol.2009.08.001
Sato, T., Kikuchi, M., & Aizawa, M. (2017). Preparation of hydroxyapatite/collagen injectable bone paste with an anti-washout property utilizing sodium alginate. Part 1: influences of excess supplementation of calcium compounds. Journal of Materials Science: Materials in Medicine, 28, 1-7.
https://doi.org/10.1007/s10856-017-5853-3
Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C. F. & Mishra, N. C. 2016. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Materials Science and Engineering C 64(March 2016): 416–427.
https://doi.org/10.1016/j.msec.2016.03.060
Sony, S., Suresh Babu, S., Nishad, K. V., Varma, H., & Komath, M. (2015). Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate. Journal of Materials Science: Materials in Medicine, 26, 1-14.
https://doi.org/10.1007/s10856-014-5355-5
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials, 3(3), 278-314.
https://doi.org/10.1016/j.bioactmat.2017.10.001.
Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K. H., & Kim, S. K. (2015). Alginate composites for bone tissue engineering: A review. International journal of biological macromolecules, 72, 269-281.
https://doi.org/10.1016/j.ijbiomac.2014.07.008
Yang, W., Yao, C., Cui, Z., Luo, D., Lee, I. S., Yao, J., ... & Kong, X. (2016). Poly (acrylic acid)-regulated synthesis of rod-like calcium carbonate nanoparticles for inducing the osteogenic differentiation of MC3T3-E1 cells. International Journal of Molecular Sciences, 17(5), 639.
https://doi.org/10.3390/ijms17050639
Zare, B., Faramarzi, M. A., Sepehrizadeh, Z., Shakibaie, M., Rezaie, S., & Shahverdi, A. R. (2012). Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Materials Research Bulletin, 47(11), 3719-3725.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Array