Boesenbergia rotunda Ethanolic Extract Inhibits Compound Action Potentials via Opioid Receptors
PDF

Keywords

Boesenbergia pandurata
compound action potential
opioid receptors
frog sciatic nerve

How to Cite

Gopalsamy, B., Chia, J. S. M., Ghazali, F. H., Amir Ramadan, A. I., Wong, S. J., Farouk, A. A. O., Sulaiman, M. R., Hussain, M. K., & Perimal, E. K. (2018). Boesenbergia rotunda Ethanolic Extract Inhibits Compound Action Potentials via Opioid Receptors. Life Sciences, Medicine and Biomedicine, 2(2). https://doi.org/10.28916/lsmb.2.2.2018.15

Abstract

Boesenbergia rotunda, traditionally used to relieve stomach, abdomen, joint, muscle, and rheumatic pain was also reported for its antinociceptive effect on a mouse model. However, the possible pain relief effect of Boesenbergia rotunda ethanolic extract (BREE) via the inhibition to the neural pain pathway remains to be elucidated. This study investigated the inhibitory effect of BREE on compound action potentials (CAPs) and the possible involvement of the opioid receptors. The changes in the CAPs amplitudes of the frog’s sciatic nerves were evaluated following the exposure to three different dosages of BREE (1, 3 and 10 mg/ml and morphine (3 mg/ml). In another set of experiment, the nerves were pretreated with a non-selective opioid receptor antagonist, naloxone (0.1 mg/ml), before exposing the nerve to BREE (1 mg/ml) to investigate the involvement of opioid receptors in the CAPs inhibitory mechanism. The outcome showed a reduction in the CAPs amplitudes when treated with BREE (1, 3 and 10 mg/ml) whereby the effect was reversible. The CAPs inhibition by BREE was absent when the opioid receptors were blocked. Taken together, these findings suggest that BREE-induced CAPs amplitude reduction involves the activation of opioid receptors.

https://doi.org/10.28916/lsmb.2.2.2018.15
PDF

References

Al-Hasani, R., & Bruchas, M. R. (2011). Molecular mechanisms of opioid receptor-dependent signaling and behavior. The Journal of the American Society of Anesthesiologists, 115(6), 1363-1381.

https://doi.org/10.1097/ALN.0b013e318238bba6

Chahyadi, A., Hartati, R., Wirasutisna, K. R., & Elfahmi. (2014). Boesenbergia pandurata roxb., an Indonesian medicinal plant: Phytochemistry, biological activity, plant biotechnology. Procedia Chemistry, 13, 13-37.

https://doi.org/10.1016/j.proche.2014.12.003

Chipman, P. H., Schachner, M., & Rafuse, V. F. (2014). Presynaptic NCAM is required for motor neurons to functionally expand their peripheral field of innervation in partially denervated muscles. Journal of Neuroscience, 34(32), 10497-10510.

https://doi.org/10.1523/JNEUROSCI.0697-14.2014

Chuakul, W., & Boonpleng, A. (2003). Ethnomedical uses of Thai Zingiberaceous plant (1). Journal of Medicinal, 10(1), 33-39.

Colucci, V., Strichartz, G., Jolesz, F., Vykhodtseva, N., & Hynynen, K. (2009). Focused ultrasound effects on nerve action potential in vitro. Ultrasound in Medicine & Biology, 35(10), 1737-1747.

https://doi.org/10.1016/j.ultrasmedbio.2009.05.002

Eng-Chong, T., Yean-Kee, L., Chin-Fei, C., Choon-Han, H., Sher-Ming, W., Li-Ping, C. T., Gen-Teck, F., Khalid, N., Abd Rahman, N., & Karsani, S. A. (2012). Boesenbergia rotunda: From ethnomedicine to drug discovery. Evidence-Based Complementary and Alternative Medicine, 2012.

https://doi.org/10.1155/2012/473637

Fry, C. H., & Jabr, R. I. (2010). The action potential and nervous conduction. Surgery (Oxford), 28(2), 49-54.

https://doi.org/10.1016/j.mpsur.2009.12.001

Guang, H. M., & Du, G. H. (2006). Protections of pinocembrin on brain mitochondria contribute to cognitive improvement in chronic cerebral hypoperfused rats. European Journal of Pharmacology, 542(1-3), 77-83.

https://doi.org/10.1016/j.ejphar.2006.04.054

Jurna, I., & Grossmann, W. (1977). The effect of morphine on mammalian nerve fibres. European Journal of Pharmacology, 44(4), 339-348.

https://doi.org/10.1016/0014-2999(77)90308-9

Katerere, D. R., Gray, A. I., Kennedy, A. R., Nash, R. J., & Waigh, R. D. (2004). Cyclobutanes from combretum albopunctatum. Phytochemistry, 65, 433-438.

https://doi.org/10.1016/j.phytochem.2003.09.014

Katsuki, R., Fujita, T., Koga, A., Liu, T., Nakatsuka, T., Nakashima, M., & Kumamoto, E. (2006). Tramadol, but not its major metabolite (mono‐o‐demethyl tramadol) depresses compound action potentials in frog sciatic nerves. British Journal of Pharmacology, 149(3), 319-327.

https://doi.org/10.1038/sj.bjp.0706868

Kirana, C., Record, I. R., McIntosh, G. H., & Jones, G. P. (2003). Screening for antitumor activity of 11 species of Indonesian zingiberaceae using human MCF-7 and HT-29 cancer cells. Pharmaceutical Biology, 41(4), 271-276.

https://doi.org/10.1076/phbi.41.4.271.15673

Kurkin, V. A., Zapesochnaya, G. G., & Braslavskii, V. B. (1990). Flavonoids in buds of Populus balsamifera. Khimiya. Prirodnykh Soedinenii, 2, 272-273.

https://doi.org/10.1007/BF00607554

Li, Z., Yang, J., Liu, J., Gong, C.-Y., Gan, J., Zhang, X., Luo, W.-J., & Li, G.-h. (2010). Reversible conduction block in isolated toad sciatic nerve by emulsified isoflurane. Anesthesia & Analgesia, 110(4), 1024-1029.

https://doi.org/10.1213/ANE.0b013e3181d2732f

Luo, J., Feng, J., Liu, S., Walters, E. T., & Hu, H. (2015). Molecular and cellular mechanisms that initiate pain and itch. Cellular and Molecular Life Sciences, 72(17), 3201-3223.

https://doi.org/10.1007/s00018-015-1904-4

Mizuta, K., Fujita, T., Nakatsuka, T., & Kumamoto, E. (2008). Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures. Life Sciences, 83(5), 198-207.

https://doi.org/10.1016/j.lfs.2008.06.002

Pandey, A. K., & Deshpande, S. B. (2012). Bisphenol A depresses compound action potential of frog sciatic nerve in vitro involving Ca2+-dependent mechanisms. Neuroscience Letters, 517(2), 128-132.

https://doi.org/10.1016/j.neulet.2012.04.044

Riswan, S., & Sangat-Roemantyo, H. (2002). Jamu as traditional medicine in Java, Indonesia. South Pacific Study, 23(1), 1-10.

Scholz, A. (2002). Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. British Journal of Anaesthesia, 89(1), 52-61.

https://doi.org/10.1093/bja/aef163

Shi, L. L., Qiang, G. F., Gao, M., Zhang, H. A., Chen, B. N., Yu, X. Y., Xuan, Z. H., Wang, Q. Y., & Du, G. H. (2011). Effect of pinocembrin on brain mitochondrial respiratory function. Yao Xue Xue Bao, 46(6), 642-649.

Shindo K, K. M., Kinoshita A, Kobayashi A, Koike Y. (2006). Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. Rhizome. Bioscience, Biotechnology, and Biochemistry, 70(9), 2281-2284.

https://doi.org/10.1271/bbb.60086

Stein, C. (2016). Opioid receptors. Annual Review of Medicine, 67, 433-451.

https://doi.org/10.1146/annurev-med-062613-093100

Trakoontivakorn, G., Nakahara, K., Shinmoto, H., Takenaka, M., Onishi-Kameyama, M., Ono, H., Yoshida, M., Nagata, T., & Tsushida, T. (2001). Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. Journal of Agricultural and Food Chemistry, 49, 3046-3050.

https://doi.org/10.1021/jf010016o

Tremont‐Lukats, I. W., Teixeira, G., & Backonja, M. (2005). Systemic administration of local anesthetic agents to relieve neuropathic pain. The Cochrane Library.

https://doi.org/10.1213/01.ANE.0000186348.86792.38

Tuntiwachwuttikul, P., Pancharoen, O., Reutrakul, V., & Byrne, L. T. (1984). (10 rs,20 sr,60 rs)-(2,6-dihydroxy-4- methoxy-phenyl)-[30 -methyl-20 -(300-methylbut-200-enyl)- 60 -phenyl-cyclohex-30 -enyl] methanone (Panduratin A), a constituent of the red rhizomes of a variety of Boesenbergia pandurata. Australian Journal of Chemistry, 37, 1739-1745.

https://doi.org/10.1071/CH9840449

Win, N., Awale, S., Esumi, H., Tezuka, Y., & Kadota, S. (2008). Panduratins D-I, novel secondary metabolites from rhizomes of Boesenbergia pandurata. Chemical &Pharmaceutical Bulletin, 56, 491-496.

https://doi.org/10.1248/cpb.56.491

Winarti, L., & Wantiyah, W. (2015). Examination of analgetics effects of extract Boesenbergia pandurata (Roxb.) schlechter to swiss furrow male mice. Traditional Medicine Journal, 16(1), 26-33.

Yao, L.-H., Yu, H.-M., Xiong, Q.-P., Sun, W., Xu, Y.-L., Meng, W., Li, Y.-P., Liu, X.-P., & Yuan, C.-H. (2015). Cordycepin decreases compound action potential conduction of frog sciatic nerve in vitro involving Ca2. Neural Plasticity, 2015.

https://doi.org/10.1155/2015/927817

Youdim, K. A., Qaiser, M. Z., Bergley, D. J., RiceEvans, C. A., & Abbott, N. J. (2004). Flavonoids permeability across an in situ model of the blood-brain barrier. Free Radical Biology and Medicine, 36, 592-604.

https://doi.org/10.1016/j.freeradbiomed.2003.11.023

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2018 Array