Titanium dioxide nanoparticles induce energy perturbation by stimulating glycolytic metabolic profile in rats
PDF

Keywords

Titanium dioxide nanoparticles
energy metabolism
glycolytic
lymphocytes
hexokinase

How to Cite

Kehinde, S., Adelesi, O., Ugbaja, R. N., Dare, E., & Ademuyiwa, O. (2024). Titanium dioxide nanoparticles induce energy perturbation by stimulating glycolytic metabolic profile in rats. Life Sciences, Medicine and Biomedicine, 8(1). https://doi.org/10.28916/lsmb.8.1.2024.156

Abstract

The safety of titanium dioxide nanoparticles (TiO2-NPs) remains uncertain due to a scarcity of data regarding its absorption, distribution, elimination, and potential adverse effects following oral exposure. As emerging evidence suggests perturbations in energy metabolism play a pivotal role in the toxicity induced by various toxicants, this investigation aimed to assess the effect of TiO2-NPs on the activities of specific glycolytic enzymes in rats. In this study, seventy-two (72) male Wistar rats (200 ± 20g) were divided into 12 groups, each consisting of 6 animals. The rats were orally exposed to TiO2-NPs (8-12nm) at doses of 50, 150, and 250 mg/kg body weight (BW) for durations of 4, 8, and 12 weeks. The control groups received distilled water. The results showed that, except for the 150 mg/kg BW dose of 12 weeks, TiO2-NPs exposure led to an up-regulation in hexokinase activity in lymphocytes, plasma, erythrocytes, and the liver. Hepatic and lymphocyte aldolase activities were also up-regulated, except at 8 and 12 weeks for the 50 and 150 mg/kg BW doses, where slight decreases were observed. Plasma aldolase increased, except at 12 weeks for 150 mg/kg BW dose, while erythrocyte aldolase increased only during the 4 and 8-week exposure but decreased throughout the 12-week exposure. Notably, compared to erythrocyte lactate dehydrogenase activity, which decreased, a consistent pattern observed in lymphocytes, plasma, and hepatic enzymes was a down-regulation at 8 and 12 weeks for the 50 and 150 mg/kg BW doses of TiO2-NPs. In other instances, and time intervals, lactate dehydrogenase was up-regulated. The data from this study underscores that exposure to TiO2-NPs can disrupt the glycolytic pathway of energy metabolism, particularly during the initial 4 weeks of exposure. These perturbations are characterized by increased glycolytic enzymes activity in the lymphocytes, plasma, and the liver.

https://doi.org/10.28916/lsmb.8.1.2024.156
PDF

References

Baranowska-Wójcik, E., Szwajgier, D., & Winiarska-Mieczan, A. (2022). A review of research on the impact of E171/TiO2 NPs on the digestive tract. Journal of Trace Elements in Medicine and Biology, 72, 126988.

https://doi.org/10.1016/j.jtemb.2022.126988

Bellanti, F., Vendemiale, G., & Serviddio, G. (2022). Redox experimental medicine and liver regeneration. Redox Experimental Medicine, 2022(1), R69-R82.

https://doi.org/10.1530/REM-22-0008

Bøyum, A. (1976). Isolation of lymphocytes, granulocytes and macrophages. Scandinavian journal of immunology, 5, 9-15.

https://doi.org/10.1111/j.1365-3083.1976.tb03851.x

Brand, W., Peters, R. J., Braakhuis, H. M., Maślankiewicz, L., & Oomen, A. G. (2020). Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology, 14(7), 985-1007.

https://doi.org/10.1080/17435390.2020.1778809

Cantó, C., Menzies, K. J., & Auwerx, J. (2015). NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell metabolism, 22(1), 31-53.

http://dx.doi.org/10.1016/j.cmet.2015.05.023

Chen, H., Ye, Z., Xu, X., Qin, Y., Song, C., Fan, G., & Xu, W. (2021). ALDOA inhibits cell cycle arrest induced by DNA damage via the ATM-PLK1 pathway in pancreatic cancer cells. Cancer Cell International, 21(1), 1-14.

https://doi.org/10.1186/s12935-021-02210-5

Colowick, S.P. (1973). The Hexokinases, in: The Enzymes, 9, pp. 1– 48.

https://doi.org/10.1016/S1874-6047(08)60113-4

Driscoll, K. E. (2022). Review of Lung Particle Overload, Rat Lung Cancer, and the Conclusions of the Edinburgh Expert Panel—It's Time to Revisit Cancer Hazard Classifications for Titanium Dioxide and Carbon Black. Frontiers in Public Health, 10, 907318.

https://doi.org/10.3389/fpubh.2022.907318

Ghashghaeinia, M., Köberle, M., Mrowietz, U., & Bernhardt, I. (2019). Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes. Cell Cycle, 18(12), 1316-1334.

https://doi.org/10.1080/15384101.2019.1618125

Gubatan, J., Kulkarni, C. V., Talamantes, S. M., Temby, M., Fardeen, T., & Sinha, S. R. (2023). Dietary Exposures and Interventions in Inflammatory Bowel Disease: Current Evidence and Emerging Concepts. Nutrients, 15(3), 579.

https://doi.org/10.3390/nu15030579

Horník, Š., Michálková, L., Sýkora, J., Ždímal, V., Vlčková, Š., Dvořáčková, Š., & Pelclová, D. (2021). Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. Applied Sciences, 11(14), 6601.

https://doi.org/10.3390/app11146601

Jaćević, V., Nepovimova, E., & Kuča, K. (2019). Acute toxic injuries of rat’s visceral tissues induced by different oximes. Scientific Reports, 9(1), 16425.

https://doi.org/10.1038/s41598-019-52768-4

Jagannathan, V., Singh, K., & Damodaran, M. (1956). Carbohydrate metabolism in citric acid fermentation. 4. Purification and properties of aldolase from Aspergillus niger. Biochemical Journal, 63(1), 94.

https://doi.org/10.1042/bj0630094

Jo, M. R., Bae, S. H., Go, M. R., Kim, H. J., Hwang, Y. G., & Choi, S. J. (2015). Toxicity and biokinetics of colloidal gold nanoparticles. Nanomaterials, 5(2), 835-850.

https://doi.org/10.3390/nano5020835

Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262.

https://doi.org/10.1186/s12951-022-01477-8

Kaplan, K. B., Swedlow, J. R., Morgan, D. O. and Varmus, H. E. (1995). c-Src enhances the spreading of src-/-fibroblasts on fibronectin by a kinase-independent mechanism. Genes and Development, 9(12): 1505-1517.

https://doi.org/10.1101/gad.9.12.1505

Kavanagh Williamson, M., Coombes, N., Juszczak, F., Athanasopoulos, M., Khan, M. B., Eykyn, T. R., & Huthoff, H. (2018). Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV-1. Viruses, 10(3), 114.

https://doi.org/10.3390/v10030114

Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., & Khan, M. I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.

https://doi.org/10.3390/catal12111386

Kehinde, S. A., Ore, A., Olajide, A. T., & Fatokun, T. P. (2023). Methanolic extract of Buchholzia coriacea seed (MEBCS) attenuates lipopolysaccharide-induced perturbations of energy metabolizing enzymes in mice. Food Chemistry Advances, 2, 100227.

https://doi.org/10.1016/j.focha.2023.100227

Kose, O. (2020). In vitro toxicity of titanium dioxide nanoparticles on human lung cells-impact of the physicochemical features. (English. NNT: 2020LYSEM022)(Doctoral dissertation, Université de Lyon).

Lama, S., Merlin-Zhang, O., & Yang, C. (2020). In vitro and in vivo models for evaluating the oral toxicity of nanomedicines. Nanomaterials, 10(11), 2177.

https://doi.org/10.3390/nano10112177

Lappas, C. M. (2015). The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food and chemical toxicology, 85, 78-83.

https://doi.org/10.1016/j.fct.2015.05.015

Mamczur, P., Gamian, A., Kolodziej, J., Dziegiel, P., & Rakus, D. (2013). Nuclear localization of aldolase A correlates with cell proliferation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 2812-2822.

https://doi.org/10.1016/j.bbamcr.2013.07.013

Miranda, R. R., Gorshkov, V., Korzeniowska, B., Kempf, S. J., Neto, F. F., & Kjeldsen, F. (2018). Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells. Nanotoxicology, 12(7), 781-795.

https://doi.org/10.1080/17435390.2018.1489987

Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Ajala, A. O., & Mohammed, A. K. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Applied Water Science, 10, 1-36.

https://doi.org/10.1007/s13201-019-1138-y

Naseem, T., & Durrani, T. (2021). The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology, 3, 59-75.

https://doi.org/10.1016/j.enceco.2020.12.001

Institute of Laboratory Animal Resources (US). Committee on Care, & Use of Laboratory Animals. (1986). Guide for the care and use of laboratory animals (No. 86). US Department of Health and Human Services, Public Health Service, National Institutes of Health.

Olajide, A.T., & Kehinde, S.A. (2023). Diisononyl Phthalate Perturbs Immune Cell Energy Transduction by Disrupting Some Splenic and Lymphocyte Energy Metabolizing Enzymes Activities. Biomed J Sci & Tech Res 51(4), 42860- 42865.

https://doi.org/10.26717/BJSTR.2023.51.008127

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(1), 1-33.

https://doi.org/10.1186/s12951-018-0392-8

Pirovich, D. B., Da’dara, A. A., & Skelly, P. J. (2021). Multifunctional fructose 1, 6-bisphosphate aldolase as a therapeutic target. Frontiers in molecular biosciences, 8, 719678.

https://doi.org/10.3389/fmolb.2021.719678

Poltronieri, P., Celetti, A., & Palazzo, L. (2021). Mono (ADP-ribosyl)ation enzymes and NAD+ metabolism: a focus on diseases and therapeutic perspectives. Cells, 10(1), 128.

https://doi.org/10.3390/cells10010128

Pujalté, I., Serventi, A., Noël, A., Dieme, D., Haddad, S., & Bouchard, M. (2017). Characterization of aerosols of titanium dioxide nanoparticles following three generation methods using an optimized aerosolization system designed for experimental inhalation studies. Toxics, 5(3), 14.

https://doi.org/10.3390/toxics5030014

Rabajczyk, A., Zielecka, M., Klapsa, W., & Dziechciarz, A. (2021). Self-cleaning coatings and surfaces of modern building materials for the removal of some air pollutants. Materials, 14(9), 2161.

https://doi.org/10.3390/ma14092161

Romani, P., Valcarcel-Jimenez, L., Frezza, C., & Dupont, S. (2021). Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 22(1), 22-38.

https://doi.org/10.1038/s41580-020-00306-w

Romero-Garcia, S., Moreno-Altamirano, M. M. B., Prado-Garcia, H., & Sánchez-García, F. J. (2016). Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Frontiers in immunology, 7, 159755.

https://doi.org/10.3389/fimmu.2016.00052

Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and fibre toxicology, 10, 1-33.

https://doi.org/10.1186/1743-8977-10-15

Žerjav, G., Žižek, K., Zavašnik, J., & Pintar, A. (2022). Brookite vs. rutile vs. anatase: What’s behind their various photocatalytic activities?. Journal of Environmental Chemical Engineering, 10(3), 107722.

https://doi.org/10.1016/j.jece.2022.107722

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Array