Actinobacteria from Greenwich Island and Dee Island: Isolation, diversity and distribution
PDF

Keywords

Rare Actinobacteria, distribution, Greenwich Island, Dee Island, Antarctica

How to Cite

Pek Lim, C., Chai Hoon, K., & Cheah, Y. K. (2017). Actinobacteria from Greenwich Island and Dee Island: Isolation, diversity and distribution. Life Sciences, Medicine and Biomedicine, 1(1). https://doi.org/10.28916/lsmb.1.1.2017.2

Abstract

Actinobacteria from underexplored and unusual environments have gained significant attention for their capability in producing novel bioactive molecules of diverse chemical entities. Streptomyces is the most prolific Actinobacteria in producing useful molecules. Rapid decline effectiveness of existing antibiotics in the treatment of infections are caused by the emergence of multidrug-resistant pathogens. Intensive efforts are urgently required in isolating non-Streptomyces or rare Actinobacteria and understanding of their distribution in the harsh environment for new drug discovery. In this study, pretreatment of  soil samples with 1.5% phenol was used for the selective isolation of Actinobacteria from Dee Island and Greenwich Island. A high number of non-Streptomyces (69.4%) or rare Actinobacteria was significantly recovered despite the Streptomyces (30.6%), including the genera Micromonospora, Micrococcus, Kocuria, Dermacoccus, Brachybacterium, Brevibacterium, Rhodococcus, Microbacterium  and Rothia. Reduced diversity and shift of distribution were observed at the elevated level of soil pH. The members of genera Streptomyces, Micromonospora and Micrococcus were found  to distribute and tolerate to a relatively high pH level of soil (pH 9.4-9.5), and could potentially be alkaliphilic Actinobacteria. The phylogenetic analysis had revealed some potentially new taxa members of the genera Micromonospora, Micrococcus and Rhodococcus. Principal Component Analysis of soil samples was used to uncover the factors that underlie the diversity of culturable Actinobacteria. Water availability in soil was examined as the principal factor that shaped the diversity of the Actinobacteria, by providing a dynamic source for microbial interactions and elevated diversity of Actinobacteria.

https://doi.org/10.28916/lsmb.1.1.2017.2
PDF

References

Aislabie JM, Lau A, Dsouza M, Shepherd C, Rhodes P, Turner SJ (2013) Bacterial composition of soils of the Lake Wellman area, Darwin Mountains, Antarctica. Extremophiles 17:775-786.

https://doi.org/10.1007/s00792-013-0560-6

Antal N, Fiedler HP, Stackebrandt E, Beil W, Ströch K, Zeeck A (2005). Retymicin, Galtamycin B, Saquayamycin Z and Ribofuranosyllumichrome, novel secondary metabolites from Micromonospora sp. Tü 6368. J Antibiot 58:95-102.

https://doi.org/10.1038/ja.2005.12

Arcamone F, Cassinelli G, DiMatteo F, Forenza S, Ripamonti MC, Rivola G, Vigevani A, Clardy J, McCabe T (1980) Structures of novel anthracycline antitumor antibiotics from Micromonospora peucetica. J Am Chem Soc 102:1462-1463.

https://doi.org/10.1021/ja00524a061

Arenas FA, Pugin B, Henrı'quez NA, Arenas-Salinas MA, Dı'az-Va'squez WA, Pozo MF, Mun˜oz, CM, Chasteen, TG, Pe'rez-Donoso JM, Va'squez CC (2014) Isolation, identification and characterization of highly telluriteresistant, tellurite-reducing bacteria from Antarctica. Polar Sci 8:40-52.

https://doi.org/10.1016/j.polar.2014.01.001

Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca Raton.

Azman AS, Othman I, Velu SS, Chan KG, Lee LH (2015) Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 6.

https://doi.org/10.3389/fmicb.2015.00856

Babalola OO, Kirby BM, Roes-Hill L, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566-576.

https://doi.org/10.1111/j.1462-2920.2008.01809.x

Baltz RH (2006) Combinatorial biosynthesis of novel antibiotics and other secondary metabolites in actinomycetes. SIM News 56:148-160.

Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, Campbell IB, Lyons WB, Moorhead DL, Nkem JN, Sletten RS (2006) Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem 38:3019-3034.

https://doi.org/10.1016/j.soilbio.2006.04.041

Basilio A, Gonza' lez I, Vicente MF, Gorrochategui J, Cabello A, Gonza'lez A, Genilloud O (2003) Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J Appl Microbiol 95:814-823.

https://doi.org/10.1046/j.1365-2672.2003.02049.x

Becerril-Espinosa A, Freel KC, Jensen PR, Soria-Mercado IE (2013) Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential. A Van Leeuw J Microb103:809-819.

https://doi.org/10.1007/s10482-012-9863-3

Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1-26.

https://doi.org/10.1038/ja.2005.1

Bredholdt H, Galatenko OA, Engelhardt K, Fjaervik E, Terekhova LP, Zotchev SB (2007) Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environ Microbiol 9: 2756-2764.

https://doi.org/10.1111/j.1462-2920.2007.01387.x

Bull AT (2011) Actinobacteria of the Extremobioshpere. In: Koki Horikoshi (ed) Extremophiles Handbook, Springer. pp 1203-1240.

https://doi.org/10.1007/978-4-431-53898-1_58

Cameron RE, Morelli FA, Johnson RM (1972). Bacterial species in soil and air of Antarctic continent. Antarct J US 7:187-189.

Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998-3006.

https://doi.org/10.1111/j.1462-2920.2010.02277.x

Crawford DL (1988) Biodegradation of agricultural and urban wastes. In: Goodfellow M (ed) Actinomycetes in Biotechnology. Academic Press, London. pp 433-439.

https://doi.org/10.1016/B978-0-12-289673-6.50015-4

Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MGA, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023-1035.

https://doi.org/10.1007/s00792-013-0584-y

Fan J, Li L, Han J, Ming H, Li J, Na G, Chen J (2013) Diversity and structure of bacterial communities in Fildes Peninsula, King George Island. Polar Biol 36:1385-1399.

https://doi.org/10.1007/s00300-013-1358-9

Felsenstein J (1985) Confidence limits on phylogeny: an appropriate use of the bootstrap. Evolution 39:783-791.

https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Foong CP, Ling CMWV, González M (2010) Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci 4:263-273.

https://doi.org/10.1016/j.polar.2010.05.010

Ganzert L, Lipski A, Hubberten HW, Wagner D (2011) The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiol Ecol 76:476-491.

https://doi.org/10.1111/j.1574-6941.2011.01068.x

Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401-2412.

https://doi.org/10.1099/ijs.0.63785-0

Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66-112.

https://doi.org/10.1128/MMBR.05011-11

Gesheva V, Negoita T (2012) Psychrotrophic microorganism communities in soils of Haswell Island, Antarctica, and their biosynthetic potential. Polar Biol 35:291-297.

https://doi.org/10.1007/s00300-011-1052-8

Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189-216.

https://doi.org/10.1146/annurev.mi.37.100183.001201

Hayakawa M (2008) Studies on the isolation and distribution of rare Actinomycetes in soil. Actinomycetologica 22:12-19.

https://doi.org/10.3209/saj.SAJ220103

Hayakawa M, Iino H, Takeuchi S, Yamazaki T (1997) Application of a method incorporating treatment with chloramine-T for the selective isolation of Streptosporangiaceae from soil. J Ferment Bioeng 84:599-602.

https://doi.org/10.1016/S0922-338X(97)81919-8

Hayakawa M, Ohara Y (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501-509.

https://doi.org/10.1016/0385-6380(87)90108-7

Hayakawa M, Yoshida Y, Limura Y (2004) Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J Appl Microbiol 96:973-981.

https://doi.org/10.1111/j.1365-2672.2004.02230.x

Hirsh P, Mevs U, Kroppendstedt RM, Schumann P, Stackebrandt E (2004) Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166-274.

https://doi.org/10.1078/072320204322881781

Hogg ID, Cary SC, Convey P, Newsham KK, O'donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035-3040.

https://doi.org/10.1016/j.soilbio.2006.04.026

Hong K, Gao AH, Xie QY, Gao H, Zhuang L, Lin HP, Yu HP, Li J, Yao XS, Goodfellow M, Ruan JS (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24-44.

https://doi.org/10.3390/md7010024

Ivanov LL (2009) Antarctica: Livingston Island and Greenwich, Robert, Snow and Smith Islands. Scale 1:120000 topographic map. Troyan: Manfred Wörner Foundation. ISBN 978-954-92032-6-4.

Jadoon WA, Nakai R, Naganuma T (2013) Biogeographical note on Antarctic microflorae: Endenism and cosmopolitanism. Geoscience Frontiers 4:633-646.

https://doi.org/10.1016/j.gsf.2012.11.002

Jiang CL, Xu LH (1996) Diversity of aquatic actinomycetes in Lakes of the Middle Plateau, Yunnan, China. Appl Environ Microbiol 62:249-253.

https://doi.org/10.1128/aem.62.1.249-253.1996

Jiang Y, Cao YR, Wiese J, Tang SK, Xu LH, Imhoff JF, Jiang CL (2011) Streptomyces sparsus sp. nov., isolated from a saline and alkaline soil. Int J Syst Evol Microbiol 61:1601-1605.

https://doi.org/10.1099/ijs.0.020669-0

Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716-721.

https://doi.org/10.1099/ijs.0.038075-0

Küster E, Williams ST (1964) Media for the isolation of streptomycetes: starch casein medium. Nature 202:928-929.

https://doi.org/10.1038/202928a0

Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York. pp 115-175.

Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111-5120.

https://doi.org/10.1128/AEM.00335-09

Le Roes-Hill M, Rohland J, Meyers PR, Cowan DA, Burton SG (2009) Streptomyces hypolithicus sp. nov., isolated from an Antarctic hypolith community. Int J Syst Evol Microbiol 59:2032-2035.

https://doi.org/10.1099/ijs.0.007971-0

Lee KE (1991) The diversity of soil organisms. In: Hawksworth DL (ed) The Biodiversity of Microorganisms and Invertebrates: Its Role in Sustainable Agriculture. CAB International, Wallingford, UK. pp 73-87.

Lee LH, Cheah YK, Sidik SM, Xie QY, Tang YL, Lin HP, Ab Mutalib NS, Hong K (2013) Barrientosiimonas humi gen. nov., sp. nov., anactinobacterium of the family Dermacoccaceae. Int J Syst Evol Microbiol 63:241-248.

https://doi.org/10.1099/ijs.0.038232-0

Li J, Tian XP, Zhu TJ, Yang LL, Li WJ (2011) Streptomyces fildesensis sp. nov., a novel streptomycete isolated from Antarctic soil. A Van Leeuw J Microb 100:537-543.

https://doi.org/10.1007/s10482-011-9609-7

Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G (2012) Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. A Van Leeuw J Microb 101:515-527.

https://doi.org/10.1007/s10482-011-9661-3

Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346-361.

https://doi.org/10.1016/j.resmic.2010.12.004

Mitsui R, Hirota M, Tsuno T, Tanaka M (2010) Purification and characterization of vanillin dehydrogenases fromalkaliphile Micrococcus sp.TA1 and neutrophile Burkholderia cepacia TM1. FEMS Microbiol Lett 303:41-47.

https://doi.org/10.1111/j.1574-6968.2009.01859.x

Muñoz PA, Flores PA, Boehmwald FA, Blamey JM (2011) Thermophilic bacteria present in a sample from Fumarole Bay, Deception Island. Antarctic Sci 23:549-555.

https://doi.org/10.1017/S0954102011000393

Nichols D, Bowman J, Sanderson K, Nichols C, Lewis T, Mcmeekin T, Nichols PD (1999) Development with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol 10:240-246.

https://doi.org/10.1016/S0958-1669(99)80042-1

Onofri S, Selbmann L, Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657-1664.

https://doi.org/10.1016/j.asr.2007.06.004

Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: New insights. Biochim Biophys Acta 1717:67-88.

https://doi.org/10.1016/j.bbamem.2005.09.010

Pan SY, Annie Tan GY, Convey P, Pearce DA, Irene Tan KP (2013) Diversity and bioactivity of actinomycetes from Signy Island terrestrial soils, maritime Antarctic. Adv Polar Sci 24:208-212.

https://doi.org/10.3724/SP.J.1085.2013.00208

Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a southern maritime Antarctic soil. Front Microbiol 3:1-13.

https://doi.org/10.3389/fmicb.2012.00403

Pisano MA, Sommer MJ, Brancaccio L (1989) Isolation of bioactive actinomycetes from marine sediments using rifampicin. Appl Microbiol Biotechnol 31:609-612.

https://doi.org/10.1007/BF00270804

Pisano MA, Sommer MJ, Lopez MM (1986) Application of pretreatments for the isolation of bioactive actinomycetes from marine sediments. Appl Microbiol Biotechnol 25:285-288.

https://doi.org/10.1007/BF00253664

Saitou N, Nei M (1987) The neighbour-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406-425.

Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141-155.

https://doi.org/10.1016/j.femsec.2004.11.007

Schumann P, Prauser H, Rainey FA, Stackebrandt E, Hirsch P (1997) Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278-283.

https://doi.org/10.1099/00207713-47-2-278

Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313-340.

https://doi.org/10.1099/00207713-16-3-313

Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413-421.

https://doi.org/10.1007/s00248-006-9022-3

Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030-11035.

https://doi.org/10.1073/pnas.0404206101

Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725-2729.

https://doi.org/10.1093/molbev/mst197

Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989-1001.

https://doi.org/10.1038/ismej.2010.35

Teo JKC Wong CMVL (2014). Analyses of soil bacterial diversity of the Schirmacher Oasis, Antarctica. Polar Biol 37: 631-640.

https://doi.org/10.1007/s00300-014-1463-4

Tiwari K, Gupta RK (2012) Rare Actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108-132.

https://doi.org/10.3109/07388551.2011.562482

Ugolini FC, Bockheim JG (2008) Antarctic soils and soil formation in a changing environment: a review. Geoderma 144:1-8.

https://doi.org/10.1016/j.geoderma.2007.10.005

Vasavada SH, Thumar JT, Singh SP (2006) Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci 91:1393-1397.

Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495-548.

https://doi.org/10.1128/MMBR.00005-07

Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Tru¨per HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463-464.

https://doi.org/10.1099/00207713-37-4-463

Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Marquez JA, Coniglio CT, Charney W, Herzog HL, Black J (1963) Gentamicin, 1 a new antibiotic complex from Micromonospora. J Med Chem 6:463-464.

https://doi.org/10.1021/jm00340a034

Williams ST, Davies FL (1965) Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 38:251-261.

https://doi.org/10.1099/00221287-38-2-251

Wilson K. (2001) Preparation of Genomic DNA from Bacteria. Curr Protoc Mol Biol 2.4.1-2.4.5.

Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271-1293.

https://doi.org/10.1007/BF00051979

Yassin AF, Galinski EA, Wohlfarth A, Jahnke KD, Schaal KP, Trüper HG (1993) A new actinomycete species, Nocardiopsis lucentensis sp. nov. Int J Syst Bacteriol 43: 266-271.

https://doi.org/10.1099/00207713-43-2-266

Zakharova OS, Zenova GM, Zvyagintsev DG (2003) Selective isolation of actinomycetes of the genus Actinomadura from soil. Mikrobiologiia 72:110-113.

https://doi.org/10.1023/A:1022294526830

Zhang YG, Wang HF, Liu Q, Hozzein WN, Wadaan MAM, Cheng J, Chen YJ, Zhang YM, Li WJ (2013) Streptomyces fukangensis sp. nov., a novel alkaliphilic actinomycete isolated from a saline-alkaline soil. A Van Leeuw J Microb 104:1227-1233.

https://doi.org/10.1007/s10482-013-0045-8

Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383-2387.

https://doi.org/10.1099/ijs.0.010256-0

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2017 Array