Invadopodia Formation is a Critical Step in Cancer Cell Invasion: The Effect of Passage Number on Invadopodia Formation in MDA-MB-231 Breast Cancer Cell Line
PDF

Keywords

invadopodia
passage number
DMOG
MDA-MB-231
breast cancer

How to Cite

Hamad, H. A., Kqueen, C. Y., & Md Hashim, N. F. (2018). Invadopodia Formation is a Critical Step in Cancer Cell Invasion: The Effect of Passage Number on Invadopodia Formation in MDA-MB-231 Breast Cancer Cell Line. Life Sciences, Medicine and Biomedicine, 2(3). https://doi.org/10.28916/lsmb.2.3.2018.20

Abstract

High invasive cancer cells are thought to recruit specialised actin-rich protrusions for invasion in metastasis process. These protrusions are termed invadopodia. To study invadopodia formation, one of the first challenges faced by researchers has been to optimise the cell line passage number in order to be used for the invadopodia assay. Therefore, this study aims to investigate the effects of the passage number on invadopodia formation in MDA-MB-231 breast cancer cell line. Invadopodia assay was used to achieve the aim of the study. The results provided evidence that invadopodia formation is affected by the high passage number. The cells were also tested with dimethyloxalylglycine (DMOG) a hypoxic mimicking agent which is known to be an invadopodia inducer, the results showed that the cells in low passage number (P7) treated with DMOG increase the cells forming invadopodia, while the cells with high passage number (P35) showed that DMOG fails to stimulate the cells to form invadopodia. Furthermore, the cells with high passage number after passage 15 are starting to lose the ability to degrade the gelatin. In conclusion, this study suggests that only cells with a low passage number, less than passage 15 should be used in the study of invadopodia formation to obtain the results in the search for molecular targets and signaling at invadopodia.

https://doi.org/10.28916/lsmb.2.3.2018.20
PDF

References

Beghein, E., Devriese, D., Van Hoey, E., & Gettemans, J. (2018). Cortactin and fascin-1 regulate extracellular vesicle release by controlling endosomal trafficking or invadopodia formation and function. Scientific reports, 8, 15606.

https://doi.org/10.1038/s41598-018-33868-z

Bowden, E. T., Barth, M., Thomas, D., Glazer, R. I., & Mueller, S. C. (1999). An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 18, 4440-4449.

https://doi.org/10.1038/sj.onc.1202827

Calles, K., Svensson, I., Lindskog, E., & Häggström, L. (2006). Effects of conditioned medium factors and passage number on Sf9 cell physiology and productivity. Biotechnology progress, 22, 394-400.

https://doi.org/10.1021/bp050297a

Castro-Castro, A., Marchesin, V., Monteiro, P., Lodillinsky, C., Rossé, C., & Chavrier, P. (2016). Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annual review of cell and developmental biology, 32, 555-576.

https://doi.org/10.1146/annurev-cellbio-111315-125227

Chellini, L., Caprara, V., Spadaro, F., Sestito, R., Bagnato, A., & Rosanò, L. (2018). Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signaling in ovarian cancer. Matrix Biology. doi.org/10.1016/j.matbio.2018.10.005

https://doi.org/10.1016/j.matbio.2018.10.005

Chen, T. R. (1977). In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Experimental cell research, 104, 255-262.

https://doi.org/10.1016/0014-4827(77)90089-1

Chennazhy, K. P., & Krishnan, L. K. (2005). Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering. Biomaterials, 26, 5658-5667.

https://doi.org/10.1016/j.biomaterials.2005.02.024

Choi, J. A., & Lim, I. K. (2013). TIS21/BTG2 inhibits invadopodia formation by downregulating reactive oxygen species level in MDA-MB-231 cells. Journal of cancer research and clinical oncology, 139, 1657-1665.

https://doi.org/10.1007/s00432-013-1484-3

Clark, E. S., Whigham, A. S., Yarbrough, W. G., & Weaver, A. M. (2007). Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer research, 67, 4227-4235.

https://doi.org/10.1158/0008-5472.CAN-06-3928

Crisostomo, P. R., Wang, M., Wairiuko, G. M., Morrell, E. D., Terrell, A. M., Seshadri, P., Nam, U. H., & Meldrum, D. R. (2006). High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock, 26, 575-580.

https://doi.org/10.1097/01.shk.0000235087.45798.93

Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2, 161-174.

https://doi.org/10.1038/nrc745

Enderling, H., Alexander, N. R., Clark, E. S., Branch, K. M., Estrada, L., Crooke, C., Jourquin, J., Lobdell. N., Zaman, M, H., Guelcher, S, A., Anderson, A. R., & Weaver, A. M. (2008). Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophysical Journal, 95, 2203-2218.

https://doi.org/10.1529/biophysj.108.133199

Esquenet, M., Swinnen, J. V., Heyns, W., & Verhoeven, G. (1997). LNCaP prostatic adenocarcinoma cells derived from low and high passage numbers display divergent responses not only to androgens but also to retinoids. The Journal of steroid biochemistry and molecular biology, 62, 391-399.

https://doi.org/10.1016/S0960-0760(97)00054-X

García, E., Ragazzini, C., Yu, X., Cuesta-García, E., De La Serna, J. B., Zech, T., Zech, T., Sarriό, D., & Antón, I. M. (2016). WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion. Scientific reports, 6, 23590.

https://doi.org/10.1038/srep23590

Gould, C. M., & Courtneidge, S. A. (2014). Regulation of invadopodia by the tumor microenvironment. Cell adhesion & migration, 8, 226-235.

https://doi.org/10.4161/cam.28346

Gurski, L. A., Xu, X., Labrada, L. N., Nguyen, N. T., Xiao, L., van Golen, K. L., Jia, X., & Farach-Carson, M. C. (2012). Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels. PLoS One, doi: 10.1371/journal.pone.0050075.

https://doi.org/10.1371/journal.pone.0050075

Harper, K., Lavoie, R. R., Charbonneau, M., Brochu-Gaudreau, K., & Dubois, C. M. (2018). The Hypoxic Tumor Microenvironment Promotes Invadopodia Formation and Metastasis through LPA1 Receptor and EGFR Cooperation. Molecular Cancer Research, 16, 1601-1613.

https://doi.org/10.1158/1541-7786.MCR-17-0649

Harun, S. N. A., Israf, D. A., Tham, C. L., Lam, K. W., Cheema, M. S., & Md Hashim, N. F. (2018). The Molecular Targets and Anti-Invasive Effects of 2, 6-bis-(4-hydroxyl-3methoxybenzylidine) cyclohexanone or BHMC in MDA-MB-231 Human Breast Cancer Cells. Molecules, 23, 865. doi: 10.3390/molecules23040865.

https://doi.org/10.3390/molecules23040865

Hashim, N. F. M., Nicholas, N. S., Dart, A. E., Kiriakidis, S., Paleolog, E., & Wells, C. M. (2013). Hypoxia-induced invadopodia formation: a role for β-PIX. Open biology, 3, 120159 doi: 10.1098/rsob.120159

https://doi.org/10.1098/rsob.120159

Jacob, A., & Prekeris, R. (2015). The regulation of MMP targeting to invadopodia during cancer metastasis. Frontiers in cell and developmental biology, 3, 4.

https://doi.org/10.3389/fcell.2015.00004

Maziveyi, M., Dong, S., Baranwal, S., & Alahari, S. K. (2018). Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Molecular cancer, 17, 21. doi: 10.1186/s12943-018-0764-6.

https://doi.org/10.1186/s12943-018-0764-6

Meirson, T., & Gil-Henn, H. (2018). Targeting invadopodia for blocking breast cancer metastasis. Drug Resistance Updates, 39, 1-17.

https://doi.org/10.1016/j.drup.2018.05.002

Paz, H., Pathak, N., & Yang, J. (2014). Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene, 33, 4193-4202.

https://doi.org/10.1038/onc.2013.393

Poincloux, R., Lizárraga, F., & Chavrier, P. (2009). Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci, 122, 3015-3024.

https://doi.org/10.1242/jcs.034561

Ren, X. L., Qiao, Y. D., Li, J. Y., Li, X. M., Zhang, D., Zhang, X. J., ... & Liao, W. T. (2018). Cortactin recruits FMNL2 to promote actin polymerization and endosome motility in invadopodia formation. Cancer letters, 419, 245-256.

https://doi.org/10.1016/j.canlet.2018.01.023

Salvi, A., & Thanabalu, T. (2017). Expression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter. Biochemistry and biophysics reports, 9, 13-21.

https://doi.org/10.1016/j.bbrep.2016.10.010

Smith-Pearson, P. S., Greuber, E. K., Yogalingam, G., & Pendergast, A. M. (2010). Abl kinases are required for invadopodia formation and chemokine-induced invasion. Journal of Biological Chemistry, jbc-M110. doi: 10.1074/jbc.M110.147330

https://doi.org/10.1074/jbc.M110.147330

Xie, H. Y., Shao, Z. M., & Li, D. Q. (2017). Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chinese journal of cancer, 36, 36. doi: 10.1186/s40880-017-0202-y

https://doi.org/10.1186/s40880-017-0202-y

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2018 Array