An Inhibited Dopamine Synthesizing Cell Model of AADC Deficiency
PDF

Keywords

AADC deficiency; dopamine; SH-SY5Y; retinoic acid; L-DOPA

How to Cite

Khalid, M., & Mohd Moklas, M. A. (2019). An Inhibited Dopamine Synthesizing Cell Model of AADC Deficiency. Life Sciences, Medicine and Biomedicine, 3(6). https://doi.org/10.28916/lsmb.3.6.2019.24

Abstract

Introduction: Aromatic L-amino acid decarboxylase deficiency (AADC) is a rare autosomal recessive pediatric neurotransmitter disease. To date it remains poorly understood mainly due to an absence of a disease model. The dopaminergic neuroblastoma cell SH-SY5Y was chosen to develop our AADC deficiency model. These cells are not native dopamine synthesizers. Objective: To develop a dopamine-producing cellular model of AADC deficiency using SH-SY5Y neuroblastoma cells. Methods: Dopamine pathway proteins were identified with Western Blotting. Dopaminergic differentiation was attempted using all-trans retinoic acid (ATRA) with dopamine detection via HPLC-ECD post alumina extraction. Treatment with L-DOPA provided SH-SY5Y with excess precursor. RT-PCR was used to determine the expression of markers of mature neurons. Results: Western Blot screening identified AADC, dopamine β-hydroxylase and tyrosine hyrdoxylase proteins, indicative of a dopaminergic pathway. ATRA was unsuccessful in producing dopamine from the cells. L-DOPA treatment however, generated dopamine first visible as a HPLC-ECD peak 30 minutes post-incubation. Prior to this, SH-SY5Y dopamine synthesis from L-DOPA has never been documented. This de novo synthesis is then inhibited using benserazide to form our AADC deficiency cell model. RT-PCR showed that SH-SY5Y cells express markers of mature neurons in its ‘native’ state and is not affected by L-DOPA and benserazide treatment. This cell model will potentially benefit many areas of AADC deficiency research. Conclusion: SH-SY5Y cells   produced HPLC-ECD measureable amounts of dopamine with the addition of L-DOPA.    Our model of AADC deficiency is generated by quelling the dopamine production with Benserazide.

https://doi.org/10.28916/lsmb.3.6.2019.24
PDF

References

Swoboda, K. J., Saul, P., McKenna, K. & Speller, N. B. Aromatic L-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Annals of Neurology. 2003; 54(6): S49-S55.

https://doi.org/10.1002/ana.10631

Lin, M. T. Effects of brain monoamine depletions on thermoregulation in rabbits. American Journal of Physiology. 1980; 238: R364 - R371.

https://doi.org/10.1152/ajpregu.1980.238.5.R364

Pons, R., Ford, B., Chiriboga, C. A., Clayton, P. T., Hinton, V., Hyland, K., Sharma, R. & De Vivo, D. C. Aromatic L-amino acid decarboxylase deficiency. Clinical features, treatment and prognosis. Neurology. 2004; 62: 1058 - 1065.

https://doi.org/10.1212/WNL.62.7.1058

Allen, G. F. G., Land, J. M. & Heales, S. J. R. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Molecular Genetics and Metabolism. 2009; 97: 6 - 14.

https://doi.org/10.1016/j.ymgme.2009.01.010

Voong, L. & Eriksson, T. Is rat brain content of large neutral aminoacids (LNAAs) a reflection of plasma LNAA concentrations? Journal of Neural Transmission of Genetic Selection. 1992; 87: 133 - 143.

https://doi.org/10.1007/BF01245015

Korenke, G. C., Christen, H. J., Hyland, K., Hunneman, D. H. & Hanefeld, F. Aromatic L-amino acid decarboxylase deficiency: an extrapyramidal movement disorder with oculogyric crises. European Journal of Pediatric Neurology. 1997; 1: 67 - 71.

https://doi.org/10.1016/S1090-3798(97)80065-7

Saxena, P. R. Serotonin receptors: subtypes, functional responses and therapeutic relevance. Pharmacological Therapeutics. 1995; 66: 339 - 369.

https://doi.org/10.1016/0163-7258(94)00005-N

Xie, H.-R., Hu, L.-S. and Li, G.-Y. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chinese Medical Journal. 2010; 123 (8): 1086 - 1092.

Oyarce, A. M. and Fleming, P. J. Multiple forms of human dopamine beta-hydroxylase in SH-SY5Y neuroblastoma cells. Archives of Biochemistry and Biophysiology. 1991; 290: 503 - 510.

https://doi.org/10.1016/0003-9861(91)90573-2

Takahashi, T., Deng. Y., Maruyama, W., Dostert, P., Kawai, M. and Naowi, M. Uptake of a neurotoxin candidate - (R)-1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma cells by dopamine transport system. Journal of Neural Transmission. General Section. 1994; 98: 107 - 118.

https://doi.org/10.1007/BF01277014

Melino, G. Thiele, C. J., Knight, R. A. and Piacentini, M. Retinoids and the control of growth / death decisions in human neuroblastoma cell lines. Journal of Neurooncology. 1997; 31: 65 - 83.

https://doi.org/10.1023/A:1005733430435

Pahlman, S., Ruusala, A. I., Abrahamsson, L., Mattson, M. E. and Esscher, T. Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differentiation. 1984; 14: 135 - 144.

https://doi.org/10.1016/0045-6039(84)90038-1

Constantinescu, R., Constantinescu, A. T., Reichmann, H. and Janetsky, B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. Journal of Neural Transmission. 2007; Supplementary 72: 17 -28.

https://doi.org/10.1007/978-3-211-73574-9_3

Anton, A. H. and Sayre, D. F. A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of catecholamines. Journal of Pharmacology and Experimental Therapeutics. 1962; 138: 360 - 374.

Bjorklund, A. and Dunnett, S. B. Dopamine systems in the brain: an update. Trends in Neurosciences. 2007; 30(5): 194 - 202.

https://doi.org/10.1016/j.tins.2007.03.006

Maruyama, W., Benedetti, M. S., Takahashi, T. and Naoi, M. A neurotoxin N-methyl(R)salsolinol induces apoptotic cell death in differentiated human dopaminergic neuroblastoma SH-SY5Y cells. Neuroscience Letters. 1997; 232: 147 - 150.

https://doi.org/10.1016/S0304-3940(97)00607-1

Nicolini, G., Miloso, M., Zoia, C., Di Silvestro, A., Cavaletti, G. and Tredici, G. Retinoic acid differentiated SH-SY5Y human neuroblastoma cells: an in vitro model to assess drug neurotoxicity. Anticancer Research. 1998; 18: 2477 - 2481.

Khalid, M. and Earl, J.W. Dopamine preservatives in cell culture. Proceeding from AACB '11: The Australasian Association of Clinical Biochemists. 2011; Sydney, Australia.

Benowitz, L. I. and Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends in Neuroscience. 1997; 20: 84 - 91.

https://doi.org/10.1016/S0166-2236(96)10072-2

Cassiman, D., van Pelt, J., De Vos, R., Lommel, F. V., Desmet, V., Yap, S-H. and Roskams, T. Synaptophysin: a novel marker for human and rat hepatic stellate cells. American Journal of Pathology. 1999; 155(6): 1831 - 1839.

https://doi.org/10.1016/S0002-9440(10)65501-0

Kim, K. K., Adelstein, R. S. and Kawamoto, S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. The Journal of Biological Chemistry. 2009; 284(45): 31051 - 31061.

https://doi.org/10.1074/jbc.M109.052969

Korecka, J. A., van Kesteren, R. E., Blass, E., Spitzer, S. O., Kamstra, J. H., Smit, A. B., Swaab, D. F., Verhaagen, J. and Bossers, K. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PloS One. 2013; 8(5), e63862.

https://doi.org/10.1371/journal.pone.0063862

Cheung, Y. T., Lau, W. K. W., Yu, M. S., Lai, C. S. W., Yeung, S. C., So, K. F. and Chang, C. C. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model inneurotoxicity research. Neuro Toxicology. 2009; 30: 127 - 135.

https://doi.org/10.1016/j.neuro.2008.11.001

Qiao, J., Paul. P., et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications. 2012; 424(3): 421-426.

https://doi.org/10.1016/j.bbrc.2012.06.125

Byszewska, W. and Kanska, M. Studies on enzymatic oxidation of 3',4'-dihydroxy-L-phenylalanine to dopachrome using kinetic isotope effect methods. Journal of Radioanalytical And Nuclear Chemistry. 2014; 299(3): 1373 - 1378.

https://doi.org/10.1007/s10967-013-2867-2

Gimenez-Cassina, A., Lim, F. & Diaz-Nido, J. Differentiation of a human neuroblastoma into neuron-like cells increase their susceptibility to transduction by herpesviral vectors. Journal of Neuroscience Research. 2006; 84(4): 755-767.

https://doi.org/10.1002/jnr.20976

Cheung, Y-T., Lau, W. K-W., et. al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 2009; 30(1): 127-135.

https://doi.org/10.1016/j.neuro.2008.11.001

Shipley, M. M., Mangold, C. A. and Szpra, M. L. Differentiation of the human neuroblastoma cell line. Journal of Visualized Experiments. 2016; (108), e53193.

https://doi.org/10.3791/53193

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2019 Array