Abstract
Introduction: Active compounds derived from plants are able to inhibit nerve conduction. Cardamonin, a naturally occurring chalcone, manifests anti-nociceptive, anti-inflammatory and anti-neuropathy properties. Consequently, cardamonin may potentially inhibit nerve action potential, whereby, it affects the nerve conduction. Compound action potential is the sum of the activity which is measured from a nerve trunk. Objective: The study was conducted to investigate the inhibitory effect of cardamonin on compound action potentials and its possible mechanism of action on frog sciatic nerve. Methodology: Compound action potentials were recorded from frog sciatic nerve by using the AD instrument. Sciatic nerve was isolated from the frog and placed in Ringer’s solution. Stimulating electrodes were used to stimulate the nerve and recording electrodes were used to record compound action potentials. Compound action potential of the nerve were recorded before and after treatments [vehicle, cardamonin (0.5, 1 & 2 mg/ml) & morphine (3mg/ml)]. To investigate the involvement of opioidergic system, the nerve were pre-treated with naloxone and followed by cardamonin. All the data were recorded and analysed via LabTutor software. The data were analysed by using Two-way ANOVA followed by Bonferonni’s post hoc test with significant value at P < 0.05. Results: The outcomes showed that all the doses of cardamonin significantly reduced the peak amplitude of compound action potential in frog sciatic nerves. Besides, co-treatment of naloxone and cardamonin significantly (P < 0.001) reversed the effect of cardamonin on peak amplitude of compound action potential, suggesting the involvement of opioid receptors to inhibit nerve conduction. Conclusion: Cardamonin reduces the nerve signal conduction via activation of opioid receptors to modulate pain and contribute to the analgesic effects.
References
Ahmad, S., Israf, D. A., Lajis, N. H., Shaari, K., Mohamed, H., Wahab, A. A., Somchit, M. N. (2006). Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. Eur J Pharmacol, 538(1-3), 188-194.
https://doi.org/10.1016/j.ejphar.2006.03.070
Bajgai, S. P., Prachyawarakorn, V., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2011). Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry, 72(16), 2062-2067.
https://doi.org/10.1016/j.phytochem.2011.07.002
Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389(6653), 816-824.
Chow, Y.-L., Lee, K.-H., Vidyadaran, S., Lajis, N. H., Akhtar, M. N., Israf, D. A., & Syahida, A. (2012). Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFN-γ/LPS-stimulated BV2 microglia via NF-κB signalling pathway. Int Immunopharmacol, 12(4), 657-665.
https://doi.org/10.1016/j.intimp.2012.01.009
Dong, H., Chen, S.-X., Xu, H.-X., Kadota, S., & Namba, T. (1998). A new antiplatelet diarylheptanoid from Alpinia blepharocalyx. J Nat Prod, 61(1), 142-144.
https://doi.org/10.1021/np970293i
Gissen, A. J., Gugino, L. D., Datta, S., Miller, J., & Covino, B. G. (1987). Effects of fentanyl and sufentanil on peripheral mammalian nerves. Anesth Analg, 66(12), 1272-1276.
https://doi.org/10.1213/00000539-198712000-00012
Gonçalves, L. M., Valente, I. M., & Rodrigues, J. A. (2014). An overview on cardamonin. J Med Food, 17(6), 633-640.
https://doi.org/10.1089/jmf.2013.0061
Higgs, J., Wasowski, C., Loscalzo, L. M., & Marder, M. (2013). In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3, 3-dibromoflavanone in mice. Neuropharmacology, 72, 9-19.
https://doi.org/10.1016/j.neuropharm.2013.04.020
Israf, D. A., Khaizurin, T. A., Syahida, A., Lajis, N. H., & Khozirah, S. (2007). Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-kappaB nuclear translocation and Ikappa-B phosphorylation in RAW 264.7 macrophage cells. Mol Immunol, 44(5), 673-679.
https://doi.org/10.1016/j.molimm.2006.04.025
Jaffe, R. A., & Rowe, M. A. (1996). A comparison of the local anesthetic effects of meperidine, fentanyl, and sufentanil on dorsal root axons. Anesth Analg, 83(4), 776-781.
https://doi.org/10.1213/00000539-199610000-00021
Jurna, I., & Grossmann, W. (1977). The effect of morphine on mammalian nerve fibres. Eur J Pharmacol, 44(4), 339-348.
https://doi.org/10.1016/0014-2999(77)90308-9
Kawasaki, H., Mizuta, K., Fujita, T., & Kumamoto, E. (2013). Inhibition by menthol and its related chemicals of compound action potentials in frog sciatic nerves. LIFE SCI, 92(6), 359-367.
https://doi.org/10.1016/j.lfs.2013.01.012
King, M., Su, W., Chang, A., Zuckerman, A., & Pasternak, G. W. (2001). Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci, 4(3), 268-274.
Kosugi, T., Mizuta, K., Fujita, T., Nakashima, M., & Kumamoto, E. (2010). High concentrations of dexmedetomidine inhibit compound action potentials in frog sciatic nerves without α2 adrenoceptor activation. Br J Pharmacol, 160(7), 1662-1676.
https://doi.org/10.1111/j.1476-5381.2010.00833.x
Labuz, D., Mousa, S. A., Schäfer, M., Stein, C., & Machelska, H. (2007). Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res, 1160, 30-38.
https://doi.org/10.1016/j.brainres.2007.05.049
Lee, J.-H., Jung, H. S., Giang, P. M., Jin, X., Lee, S., Son, P. T., . . . Lee, J. J. (2006). Blockade of nuclear factor-κB signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera. J Pharmacol Exp Ther, 316(1), 271-278.
https://doi.org/10.1124/jpet.105.092486
Li, Z., Yang, J., Liu, J., Gong, C.-Y., Gan, J., Zhang, X., . . . Li, G.-h. (2010). Reversible conduction block in isolated toad sciatic nerve by emulsified isoflurane. Anesth Analg, 110(4), 1024-1029.
https://doi.org/10.1213/ANE.0b013e3181d2732f
Lodish, H. (2008). Molecular cell biology: Macmillan.
Marieb, E. N., & Hoehn, K. (2007). Human anatomy & physiology: Pearson Education.
Matsushita, A., Ohtsubo, S., Fujita, T., & Kumamoto, E. (2013). Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve. Biochem Biophys Res Commun, 434(1), 179-184.
https://doi.org/10.1016/j.bbrc.2013.02.127
Mizuta, K., Fujita, T., Nakatsuka, T., & Kumamoto, E. (2008). Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures. LIFE SCI, 83(5), 198-207.
https://doi.org/10.1016/j.lfs.2008.06.002
Ohtsubo, S., Fujita, T., Matsushita, A., & Kumamoto, E. (2015). Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures. Pharmacol Res Perspect, 3(2).
https://doi.org/10.1002/prp2.127
Pandey, A. K., & Deshpande, S. B. (2012). Bisphenol A depresses compound action potential of frog sciatic nerve in vitro involving Ca 2+-dependent mechanisms. Neurosci Lett, 517(2), 128-132.
https://doi.org/10.1016/j.neulet.2012.04.044
Park, M. K., Lee, H. J., Choi, J. K., Kim, H. J., Kang, J. H., Lee, E. J., . . . Cho, H. Y. (2014). Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 and transglutaminase-2. Pharmacology Biochemistry and Behavior, 118, 10-15.
https://doi.org/10.1016/j.pbb.2013.12.019
Park, M. K., Lee, H. J., Choi, J. K., Kim, H. J., Kang, J. H., Lee, E. J., . . . Lee, C. H. (2014). Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 and transglutaminase-2. Pharmacol Biochem Behav, 118, 10-15.
https://doi.org/10.1016/j.pbb.2013.12.019
Sambasevam, Y., Farouk, A. A. O., Mohamad, T. A. S. T., Sulaiman, M. R., Bharatham, B. H., & Perimal, E. K. (2017). Cardamonin attenuates hyperalgesia and allodynia in a mouse model of chronic constriction injury-induced neuropathic pain: Possible involvement of the opioid system. Eur J Pharmacol, 796, 32-38.
https://doi.org/10.1016/j.ejphar.2016.12.020
Shannon, H. E., & Lutz, E. A. (2002). Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology, 42(2), 253-261.
https://doi.org/10.1016/S0028-3908(01)00173-3
Stein, C. (2016). Opioid receptors. Annu Rev Med, 67, 433-451.
https://doi.org/10.1146/annurev-med-062613-093100
Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J., & Panphadung, T. (2003). HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt. Songklanakarin J Sci Technol, 25(6).
Trakoontivakorn, G., Nakahara, K., Shinmoto, H., Takenaka, M., Onishi-Kameyama, M., Ono, H., . . . Tsushida, T. (2001). Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J Agric Food Chem, 49(6), 3046-3050.
https://doi.org/10.1021/jf010016o
Wang, S., Zhai, C., Zhang, Y., Yu, Y., Zhang, Y., Ma, L., . . . Qiao, Y. (2016). Cardamonin, a Novel Antagonist of hTRPA1 Cation Channel, Reveals Therapeutic Mechanism of Pathological Pain. Molecules, 21(9), 1145.
https://doi.org/10.3390/molecules21091145
Yamamoto, N., Kawabata, K., Sawada, K., Ueda, M., Fukuda, I., Kawasaki, K., . . . Ashida, H. (2011). Cardamonin stimulates glucose uptake through translocation of glucose transporter‐4 in L6 myotubes. Phytother Res, 25(8), 1218-1224.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2017 Array