A review on lab-on-chip as a potential diagnostic tool for early detection of Plasmodium knowlesi
PDF

Keywords

Plasmodium knowlesi
diagnostic tool
early detection
lab-on-chip

How to Cite

Maketar, S., & Abu Bakar, N. . (2020). A review on lab-on-chip as a potential diagnostic tool for early detection of Plasmodium knowlesi. Life Sciences, Medicine and Biomedicine, 4(9). https://doi.org/10.28916/lsmb.4.9.2020.69

Abstract

Massive elimination efforts have been done to control the malaria disease caused by the emergence of the fifth human malaria parasite known as Plasmodium knowlesi. Early detection of the parasite is important in treating malaria infection. Microscopic examination of Giemsa-stained thick and thin blood films is the gold standard for laboratory malaria diagnosis, while rapid diagnostic tests (RDTs), polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are significant diagnostic techniques to detect acute infection. However, these methods have several limitations in which it could delay the treatment. The potential of lab-on-chip (LOC) as a point-of-care diagnostic tool for malaria fulfils the requirement of limitations where it is able to produce early detection of malaria infection. This review discusses advantages and disadvantages of malaria diagnostic methods as well as new approaches that could be used for high speed, sensitive and reliable malaria detection to prevent the disease from causing severe complications and even fatal if left untreated.

https://doi.org/10.28916/lsmb.4.9.2020.69
PDF

References

Amir, A., Cheong, F. W., de Silva, J. R., Liew, J. W. K., & Lau, Y. L. (2018). Plasmodium knowlesi malaria: current research perspectives. Infection and Drug Resistance, 11, 1145.

https://doi.org/10.2147/IDR.S148664

Amir, A., Russell, B., Liew, J. W. K., Moon, R. W., Fong, M. Y., Vythilingam, I., Subramaniam, V., Snounou, G., & Lau, Y. L. (2016). Invasion characteristics of a Plasmodium knowlesi line newly isolated from a human. Scientific Reports, 6(1), 1-8.

https://doi.org/10.1038/srep24623

Barber, B. E., Rajahram, G. S., Grigg, M. J., William, T., & Anstey, N. M. (2017). World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malaria Journal, 16(1), 1-3.

https://doi.org/10.1186/s12936-017-1787-y

Berhane, A., Russom, M., Bahta, I., Hagos, F., Ghirmai, M., & Uqubay, S. (2017). Rapid diagnostic tests failing to detect Plasmodium falciparum infections in Eritrea: an investigation of reported false negative RDT results. Malaria Journal, 16(1), 1-6.

https://doi.org/10.1186/s12936-017-1752-9

Berzosa, P., de Lucio, A., Romay-Barja, M., Herrador, Z., González, V., García, L., Fernandez-Martinez, A., Santana-Morales, M., Ncogo., P., & Valladares, B. (2018). Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malaria Journal, 17(1), 333.

https://doi.org/10.1186/s12936-018-2481-4

Divis, P. C., Hu, T. H., Kadir, K. A., Mohammad, D. S., Hii, K. C., Daneshvar, C., Conway, D. J., & Singh, B. (2020). Efficient Surveillance of Plasmodium knowlesi Genetic Subpopulations, Malaysian Borneo, 2000-2018. Emerging Infectious Diseases, 26(7), 1392.

https://doi.org/10.3201/eid2607.190924

Fançony, C., Sebastião, Y. V., Pires, J. E., Gamboa, D., & Nery, S. V. (2013). Performance of microscopy and RDTs in the context of a malaria prevalence survey in Angola: a comparison using PCR as the gold standard. Malaria Journal, 12(1), 284.

https://doi.org/10.1186/1475-2875-12-284

Grüring, C., Moon, R. W., Lim, C., Holder, A. A., Blackman, M. J., & Duraisingh, M. T. (2014). Human red blood cell‐adapted Plasmodium knowlesi parasites: a new model system for malaria research. Cellular Microbiology, 16(5), 612-620.

https://doi.org/10.1111/cmi.12275

Herman, L. S., Fornace, K., Phelan, J., Grigg, M. J., Anstey, N. M., William, T., Moon, R. W., Blackman, M. J., Drakeley, C.J., & Tetteh, K. K. (2018). Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. PLoS Neglected Tropical Diseases, 12(6), e0006457.

https://doi.org/10.1371/journal.pntd.0006457

Hochstetter, A. (2020). Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. Micromachines, 11(5), 468.

https://doi.org/10.3390/mi11050468

Kolluri, N., Klapperich, C., & Cabodi, M. (2018). Towards lab-on-a-chip diagnostics for malaria elimination. Lab on a Chip, 18(1), 75-94.

https://doi.org/10.1039/C7LC00758B

Kong, T. F., Ye, W., Peng, W. K., Hou, H. W., Preiser, P. R., Nguyen, N.-T., & Han, J. (2015). Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection. Scientific Reports, 5, 11425.

https://doi.org/10.1038/srep11425

Lo, E., Nguyen, K., Nguyen, J., Hemming-Schroeder, E., Xu, J., Etemesi, H., Githeko, A., & Yan, G. (2017). Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerging Infectious Diseases, 23(4), 601.

https://doi.org/10.3201/eid2304.161245

Millar, S., & Cox-Singh, J. (2015). Human infections with Plasmodium knowlesi-zoonotic malaria. Clinical Microbiology and Infection, 21(7), 640-648.

https://doi.org/10.1016/j.cmi.2015.03.017

Mohamad, F., & Abu-Bakar, N. (2019). Towards successful adaptation of Plasmodium knowlesi to long-term in-vitro culture in human erythrocytes. International Journal of Pharmaceutical Sciences and Research, 10(6), 2663-2669.

http://dx.doi.org/10.13040/IJPSR.0975-8232.10(6).2663-69

Mohring, F., Hart, M. N., Rawlinson, T. A., Henrici, R., Charleston, J. A., Benavente, E. D., & Campino, S. (2019). Rapid and iterative genome editing in the malaria parasite Plasmodium knowlesi provides new tools for P. vivax research. Elife, 8, e45829.

https://doi.org/10.7554/eLife.45829

Moon, R. W., Hall, J., Rangkuti, F., Ho, Y. S., Almond, N., Mitchell, G. H., Pain, A., Holder, A. A., & Blackman, M. J. (2013). Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proceedings of the National Academy of Sciences, 110(2), 531-536.

https://doi.org/10.1073/pnas.1216457110

Mukry, S. N., Saud, M., Sufaida, G., Shaikh, K., Naz, A., & Shamsi, T. S. (2017). Laboratory diagnosis of malaria: comparison of manual and automated diagnostic tests. Canadian Journal of Infectious Diseases and Medical Microbiology, 2017.

https://doi.org/10.1155/2017/9286392

Noulin, F., Manesia, J. K., Rosanas-Urgell, A., Erhart, A., Borlon, C., Van Den Abbeele, J., d'Alessandro, U., & Verfaillie, C. M. (2014). Hematopoietic stem/progenitor cell sources to generate reticulocytes for Plasmodium vivax culture. PLoS One, 9(11), e112496.

https://doi.org/10.1371/journal.pone.0112496

Nuin, N. A., Tan, A. F., Lew, Y. L., Piera, K. A., William, T., Rajahram, G. S., Jelip, J., Dony, J. F., Mohammad, R., Cooper, D. J., & Barber, B. E. (2020). Comparative Evaluation of Two Commercial Real-time Pcr Kits (Quantifast™ and Abtes™) for the Detection of Plasmodium knowlesi and Other Plasmodium Species in Sabah, Malaysia.

https://doi.org/10.21203/rs.3.rs-30644/v1

Okafor CN, Finnigan NA. Plasmodium Ovale Malaria. [Updated 2020 Aug 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519021/

Roncalés, M., Vidal, J., Torres, P. A., & Herreros, E. (2015). In vitro culture of Plasmodium falciparum: Obtention of synchronous asexual erythrocytic stages. Open Journal of Epidemiology, 5(01), 71.

https://doi.org/10.4236/ojepi.2015.51010

Singh, B., Sung, L. K., Matusop, A., Radhakrishnan, A., Shamsul, S. S., Cox-Singh, J., thomas, A., & Conway, D. J. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. The Lancet, 363(9414), 1017-1024.

https://doi.org/10.1016/S0140-6736(04)15836-4

Talapko, J., Škrlec, I., Alebić, T., Jukić, M., & Včev, A. (2019). Malaria: the past and the present. Microorganisms, 7(6), 179.

https://doi.org/10.3390/microorganisms7060179

Taylor, B. J., Howell, A., Martin, K. A., Manage, D. P., Gordy, W., Campbell, S. D., Jin, D., Polley, S. D., & Samuel, R. A. (2014). A lab-on-chip for malaria diagnosis and surveillance. Malaria Journal, 13(1), 179.

https://doi.org/10.1186/1475-2875-13-179

Warkiani, M. E., Tay, A. K. P., Khoo, B. L., Xiaofeng, X., Han, J., & Lim, C. T. (2015). Malaria detection using inertial microfluidics. Lab on a Chip, 15(4), 1101-1109.

https://doi.org/10.1039/C4LC01058B

WHO. (2019). World Malaria Report. Geneva: World Health Organization.

Zaw, M. T., & Lin, Z. (2014). Methods for Detection and Identification of Plasmodium knowlesi: A Review Article. International Journal of Collaborative Research on Internal Medicine & Public Health, 6(1), 0-0.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Array