A polyphenol, pyrogallol changes the acidic pH of the digestive vacuole of Plasmodium falciparum
PDF
HTML

Keywords

Plasmodium falciparum
pyrogallol
antimalarial
pH changes
proton pump

How to Cite

Ja’afar, N. S. A., Nik Mat Zin, N. N. I., Mohamad, F. S., & Abu-Bakar, N. (2021). A polyphenol, pyrogallol changes the acidic pH of the digestive vacuole of Plasmodium falciparum. Life Sciences, Medicine and Biomedicine, 5(1). https://doi.org/10.28916/lsmb.5.1.2021.82

Abstract

Pyrogallol has a capability of generating free radicals like other antimalarial drugs such as artemisinin, which is thought to inhibit the proton pump located in the membrane of the Plasmodium falciparum digestive vacuole, thus alkalinising this acidic organelle. This study aimed to determine pH changes of the malaria parasite’s digestive vacuole following treatment with pyrogallol. The antimalarial activity of this compound was evaluated by a malarial SYBR Green 1 fluorescence-based assay to determine the 50% inhibitory concentration (IC50). Based on the IC50 value, different concentrations of pyrogallol were selected to ensure changes of the digestive vacuole pH were not due to parasite death. This was measured by flow cytometry after 4-hour pyrogallol treatment on the fluorescein isothiocyanate-dextran-accumulated digestive vacuole of the mid-trophozoite stage parasites. Pyrogallol showed a moderate antimalarial activity with the IC50 of 2.84 ± 9.40 µM. The treatment of 1.42, 2.84 and 5.67 µM pyrogallol increased 2.9, 3.0 and 3.1 units of the digestive vacuole pH, respectively as compared with the untreated parasite (pH 5.6 ± 0.78). The proton pump, V-type H+-ATPase might be inhibited by pyrogallol, hence causing the digestive vacuole pH alteration, which is similar with the result shown by a standard V-type H+-ATPase inhibitor, concanamycin A. This study provides a fundamental understanding on the antimalarial activity and mechanism of action of pyrogallol that has a potential to be the antimalarial drug candidate.

https://doi.org/10.28916/lsmb.5.1.2021.82
PDF
HTML

References

Abu-Bakar, N., Klonis, N., & Tilley L. (2013). Does artemisinin alter the pH of the malaria parasite digestive vacuole. Malaysian Journal of Microscopy, 9(1):112-116.

Abu Bakar, N. (2015). Measuring pH of the Plasmodium falciparum digestive vacuole by flow cytometry. Tropical Biomedicine, 32(3), 485-93.

Alfaqih, H. and Abu-Bakar, N. (2020). The potential of pyrogallol as a possible antimalarial drug candidate. Academic Journal of Microbiology & Immunology, 1(1), 4.

Ashley, E. A., & Phyo, A. P. (2018). Drugs in development for malaria. Drugs, 78(9), 861-879.

https://doi.org/10.1007/s40265-018-0911-9

Ashley, E. A., Dhorda, M., Fairhurst, R. M., Amaratunga, C., Lim, P., Suon, S., et al. (2014). Spread of artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine, 371(5), 411-423.

https://doi.org/10.1056/NEJMoa1314981

Babamale, O. A., Opeyemi, O. A., Bukky, A. A., Musleem, A. I., Kelani, E.O., Okhian, B. J., & Abu-Bakar, N. (2020). Association between farming activities and Plasmodium falciparum transmission in rural communities in Nigeria. Malaysian Journal of Medical Sciences, 27(3):105-116.

https://doi.org/10.21315/mjms2020.27.3.11

Baharuddin, N., Abdullah, H., & Abdul Wahab, W. N. W. (2015). Anti-candida activity of Quercus infectoria gall extracts against Candida species. Journal of Pharmacy and Bioallied Sciences, 7(1), 15.

https://doi.org/10.4103/0975-7406.148742

Bridgford, J. L., Xie, S. C., Cobbold, S. A., Pasaje, C. F. A., Herrmann, S., Yang, T., Gillett, D. L., Dick, L. R., Ralph, S. A., Dogovski, C., Spillman, N. J. & Tilley, L. (2018). Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nature Communications, 9(1), 3801.

https://doi.org/10.1038/s41467-018-06221-1

Dery, V., Duah, N. O., Ayanful-Torgby, R., Matrevi, S. A., Anto, F., & Quashie, N. B. (2015). An improved SYBR green-1-based fluorescence method for the routine monitoring of Plasmodium falciparum resistance to anti-malarial drugs. Malaria Journal, 14(1), 481.

https://doi.org/10.1186/s12936-015-1011-x

Gazarini, M. L., Sigolo, C. A., Markus, R. P., Thomas, A. P. & Garcia, C. R. (2007) Antimalarial drugs disrupt ion homeostasis in malarial parasites. Memórias do Instituto Oswaldo Cruz, 102(3), 329-334.

https://doi.org/10.1590/S0074-02762007000300012

Gunjan, S., Sharma, T., Yadav, K., Chauhan, B. S., Singh, S. K., Siddiqi, M. I., & Tripathi, R. (2018). Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of Plasmodium. Frontiers in Cellular and Infection Microbiology, 8.

https://doi.org/10.3389/fcimb.2018.00256

Hayward, R., Saliba, K. J., & Kirk, K. (2006). The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance. Journal of Cell Science, 119(6).

https://doi.org/10.1242/jcs.02795

Ibrahim, N., & Abu-Bakar, N. (2019). Measurement of pH of the digestive vacuole isolated from the Plasmodium falciparum-infected erythrocyte by digitonin permeabilization. International Journal of Pharmaceutical Sciences and Research, 10(5), 2587-93.

Ibrahim, N., Roslee, A., Azlan, M., & Abu-Bakar, N. (2020). Sub-lethal concentrations of artemisinin alter pH of the digestive vacuole of the malaria parasite, Plasmodium falciparum. Tropical Biomedicine, 37(1), 1-14.

Inui, T., Nakahara, K., Uchida, M., Miki, W., Unoura, K., Kokeguchi, Y. & Hosokawa, T. (2004) Oxidation of ethanol induced by simple polyphenols: Prooxidant property of polyphenols. Bulletin of the Chemical Society of Japan, 77(6), 1201-1207.

https://doi.org/10.1246/bcsj.77.1201

Jang, J. W., Kim, J. Y., Yoon, J., Yoon, S. Y., Cho, C. H., Han, E. T., An, S. S. A. & Lim, C. S. (2014). Flow cytometric enumeration of parasitemia in cultures of Plasmodium falciparum stained with SYBR green I and CD235A. The Scientific World Journal, 2014, 1-6.

https://doi.org/10.1155/2014/536723

Kumar, S., Guha, M., Choubey, V., Maity, P. & Bandyopadhyay, U. (2007) Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update. Life Sciences, 80(9), 813-828.

https://doi.org/10.1016/j.lfs.2006.11.008

Mohd Yasin Z. N., Zakaria, M. A., Nik Mat Zin, N. N. I., Ibrahim, N., Mohamad, F. S., Wan Nur Syuhaila, M. D., Mohd Dasuki, S., & Abu-Bakar N. (2020). Biological activities and GCMS analysis of the methanolic extract of Christia vespertilionis (L.F.) Bakh. F. leaves. Asian Journal of Medicine and Biomedicine, 4 (2), 78-88.

https://doi.org/10.37231/ajmb.2020.4.1.335

Mohd-Zamri, H., Sinin, N. & Abu Bakar, N. (2017a). Preparation and in vitro characterization of resealed erythrocytes containing TMR-dextran for determination of hemoglobin uptake and transfer by the malaria parasite. International Journal of Pharmaceutical Sciences and Research, 8(3), 1038- 1047.

Mohd-Zamri, H., Mat-Desa, N. W., & Abu-Bakar, N. (2017b). Sensitivity of artemisinin towards different stages of development of the malaria parasite, Plasmodium falciparum. Tropical Biomedicine, 34(4), 759-769.

Moura, P. A., Dame, J. B., & Fidock, D. A. (2009). Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors. Antimicrobial Agents and Chemotherapy, 53(12), 4968-4978.

https://doi.org/10.1128/AAC.00882-09

Ngernna, S., Chim-ong, A., Roobsoong, W., Sattabongkot, J., Cui, L., & Nguitragool, W. (2019). Efficient synchronization of Plasmodium knowlesi in vitro cultures Using guanidine hydrochloride. Malaria Journal, 18(1), 148.

https://doi.org/10.1186/s12936-019-2783-1

Nik Mat Zin, N. N. I., Wan Mohd Rahimi, W. N. A. & Abu Bakar, N. (2019). A review of Quercus infectoria (Olivier) galls as a resource for anti-parasitic agents: in vitro and in vivo studies. Malaysian Journal of Medical Sciences, 26(6):19-34.

https://doi.org/10.21315/mjms2019.26.6.3

Nik Mat Zin, N. N. I., Mohamad, M. N., Roslan, K., Sazeli, A. W., Moin, N. I. A., Alias, A., Zakaria, Y., & Abu-Bakar, N (2020). In vitro antimalarial and toxicological activities of Quercus infectoria (Olivier) gall extracts. Malaysian Journal of Medical Sciences, 27(4), 36-50.

https://doi.org/10.21315/mjms2020.27.4.4

Ouji, M., Augereau, J.-M., Paloque, L., & Benoit-Vical, F. (2018). Plasmodium falciparum resistance to artemisinin-based combination therapies: A sword of damocles in the path toward malaria elimination. Parasite, 25, 24.

https://doi.org/10.1051/parasite/2018021

Percário, S., Moreira, D., Gomes, B., Ferreira, M., Gonçalves, A., Laurindo, P., et al. (2012). Oxidative stress in malaria. International Journal of Molecular Sciences, 13(12).

https://doi.org/10.3390/ijms131216346

Pua, J. Y., Abu Bakar, N., Nik Kamarudin, N. A. A., Ghazali, S. Z., Khairul, M. F. M. (2020). Long cryopreserved lab-adapted Plasmodium falciparum increases resistance to chloroquine but not its susceptibility. Life Science, Medicine and Biomedicine, 4(9).

https://doi.org/10.28916/lsmb.4.9.2020.66

Saliba, K. J., Allen, R. J. W., Zissis, S., Bray, P. G., Ward, S. A. & Kirk, K. (2003). Acidification of the malaria parasite's digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. The Journal of Biological Chemistry 278(8), 5605-5612.

https://doi.org/10.1074/jbc.M208648200

Sandlin, R. D., Fong, K. Y., Stiebler, R., Gulka, C. P., Nesbitt, J. E., Oliveira, M. P., Oliveira, M. F. & Wright, D. W. (2016). Detergent-mediated formation of β- Hematin: heme crystallization promoted by detergents implicates nanostructure formation for use as a biological mimic. Crystal Growth & Design, 16(5), 2542-2551.

https://doi.org/10.1021/acs.cgd.5b01580

Sharma, C., & Awasthi, S. K. (2015). Recent advances in antimalarial drug discovery - challenges and opportunities. An Overview of Tropical Diseases.

https://doi.org/10.5772/61191

Sutanto, H., Susanto, B.h. & Nasikin, M. (2019). Solubility and antioxidant potential of a pyrogallol derivative for biodiesel additive. Molecules, 24(13), 2439.

https://doi.org/10.3390/molecules24132439

Tang, T., Xu, W., Ma, J., Wang, H., Cui, Z., Jiang, T., & Li, C. (2019). Inhibitory mechanisms of DHA/CQ on pH and iron homeostasis of erythrocytic stage growth of Plasmodium falciparum. Molecules, 24(10), 1941.

https://doi.org/10.3390/molecules24101941

Tinh, T. H., Nuidate, T., Vuddhakul, V. & Rodkhum, C. (2016) Antibacterial Activity of Pyrogallol, a Polyphenol Compound against Vibrio parahaemolyticus Isolated from The Central Region of Thailand. Procedia Chemistry, 18, 162-168.

https://doi.org/10.1016/j.proche.2016.01.025

van Schalkwyk, D. A., Saliba, K. J., Biagini, G. A., Bray, P. G., & Kirk, K. (2013). Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress. PLoS ONE, 8(3).

https://doi.org/10.1371/journal.pone.0058933

Venancio, V.P., Abrao, L.C., Kim, H., Talcott, S.T. & Mertens-Talcott, S.U. (2016). In vitro antimalarial activity of microbial metabolites from mango tannins (Mangifera indica L.). The Federation of American Societies for Experimental Biology. 30 (S1)

Wissing, F., Sanchez, C. P., Rohrbach, P., Ricken, S. & Lanzer, M. (2002) Illumination of the Malaria Parasite Plasmodium falciparum Alters Intracellular pH. Journal of Biological Chemistry, 277(40), 37747-37755.

https://doi.org/10.1074/jbc.M204845200

Wunderlich, J., Rohrbach, P. & Dalton, J. (2012). The malaria digestive vacuole. Frontiers in Bioscience, S4(4), 344.

https://doi.org/10.2741/s344

World Health Organisation (2019). World Malaria Report 2019. Geneva: World Health Organisation.

https://www.who.int/publications/i/item/9789241565721

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Array